{ "cells": [ { "cell_type": "markdown", "id": "274ddf5d-8f33-4741-9046-0fb37f17cfb5", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "# Color grid predictions\n", "\n", "It is generally useful when analysing stellar populations to plot the color of the populations against a background model grid to infer the age and metallicity of the population. With milespy, it is straightforward to generate such a grid in a few steps." ] }, { "cell_type": "code", "execution_count": 1, "id": "05e36a0b-a325-48f6-ba66-aa045feb5b87", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [], "source": [ "from milespy import SSPLibrary\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import astropy.units as u\n", "import milespy.filter as flib" ] }, { "cell_type": "markdown", "id": "c7f82768-b3cc-40de-a279-28b86c565fa5", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "We start for this example with the E-MILES SSP library and with the Kroupa Universal IMF (see the [MILES webpage](http://research.iac.es/proyecto/miles/pages/ssp-models.php)) with the BaSTI isochrones." ] }, { "cell_type": "code", "execution_count": 2, "id": "63b0c874-44bc-484d-a013-d0103c174e7d", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [], "source": [ "emiles = SSPLibrary(\n", " source=\"EMILES_SSP\",\n", " version=\"9.1\",\n", " imf_type=\"ku\",\n", " isochrone=\"T\",\n", ")" ] }, { "cell_type": "markdown", "id": "aff2f1ba-adec-4aa3-a034-344342db6e49", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "As for this exercise we do not need the full EMILES spectral range, we trim the models to save some memory." ] }, { "cell_type": "code", "execution_count": 3, "id": "9dcfd125-45a0-478b-bd32-e7d04d2fe0fe", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [], "source": [ "emiles.trim(3600*u.AA, 15000*u.AA)" ] }, { "cell_type": "markdown", "id": "83e74fe4-4a8a-4be3-91d3-55aa62897cb4", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "We select the filters that we want to use. We want to use the \"g-r\" and \"i - J\" colors, so we get the correspoding filters." ] }, { "cell_type": "code", "execution_count": 4, "id": "669f6321-0230-4320-b3cd-505e96249aa6", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [], "source": [ "fnames = flib.search(\"(SLOAN_SDSS.(g|r|i)|2MASS_2MASS.J)\")\n", "filts = flib.get(fnames)" ] }, { "cell_type": "markdown", "id": "9848a924-22dd-480d-bb5a-67128f102388", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "We define the constant metallicities and ages for drawing the grid" ] }, { "cell_type": "code", "execution_count": 5, "id": "9cb8e12d-eadb-4677-9cbc-b54aaed7fa9a", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [], "source": [ "ctZs = np.array([-2.2, -1, -0.3, 0., 0.25]) << u.dex\n", "ctTs = np.array([3., 5., 7.5, 10.]) << u.Gyr" ] }, { "cell_type": "markdown", "id": "f3478f43-bd46-4782-ae0b-12b9589c41bf", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "And we proceed now to generate the plot. We start by generating the constant metallicity lines" ] }, { "cell_type": "code", "execution_count": 8, "id": "9d1d1d0d-b537-49a7-8edb-5bbce06e3d50", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdkAAAFfCAYAAAACrrbHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA88klEQVR4nO3de1wU9f4/8BfLXQVEkaso3vKSCcllRfGWq5iaYlpYKmgdLVOPyulX2gWzG5ad4qQW5THtFIpZaDdCa1VMRUiQo+QNFEWFBUnZ1SV3YXd+f/h1ThuCLDEsC6/n4zEP3JnPZ/Y9I/ramZ35jI0gCAKIiIioycksXQAREVFrxZAlIiKSCEOWiIhIIgxZIiIiiTBkiYiIJMKQJSIikghDloiISCJ2li6gIYxGI0pKSuDi4gIbGxtLl0NERBYgCAKuX78OX19fyGTWcYxoFSFbUlICf39/S5dBREQtwMWLF9G1a1dLl9EgVhGyLi4uAG7tWFdXVwtXQ0RElqDRaODv7y9mgjWwipC9fYrY1dWVIUtE1MZZ09eG1nFSm4iIyAoxZImIiCTCkCUiIpIIQ5aIiEgiDFkiIiKJMGSJiIgkwpAlIiKrt379egQEBMDJyQlyuRzZ2dl1tt2wYQOGDx8Od3d3uLu7Q6FQ1Go/Z84c2NjYmEzjx483uy6GLBERWbVt27YhLi4OK1euRG5uLgIDAxEZGYny8vI7tt+3bx8ee+wx7N27F5mZmfD398e4ceNw+fJlk3bjx49HaWmpOG3dutXs2mwEQRAatVXNSKPRwM3NDWq1moNREBG1UXVlgVwuR2hoKNatWwfg1nj3/v7+WLx4MZYvX37X9RoMBri7u2PdunWIiYkBcOtItrKyEjt37vxLNfNIloiIJKfT6SRZr16vR05ODhQKhThPJpNBoVAgMzOzQeuoqqpCdXU1OnXqZDJ/37598PT0RN++fbFgwQL89ttvZtfHkCUiIkkdP34c06ZNg1KpbPJ1V1RUwGAwwMvLy2S+l5cXVCpVg9bx/PPPw9fX1ySox48fj//85z9QKpV46623kJGRgQcffBAGg8Gs+qxi7GIiIrI+giBg69at+Ne//gWDwYDNmzdj9OjRLeoxdatXr0ZKSgr27dsHJycncf6MGTPEP993330YNGgQevXqhX379mHMmDENXn/L2VIiImo1SktL8f/+3//Du+++C4PBAIVCgaSkpCYPWA8PD9ja2qKsrMxkfllZGby9vevt+84772D16tXYvXs3Bg0aVG/bnj17wsPDA4WFhWbVxyNZIiJqEmq1Gnv27EFaWhqOHj0KALC3t0dcXBymT58uydNzHBwcEBwcDKVSiaioKAC3LnxSKpVYtGhRnf3efvttvPHGG9i1axdCQkLu+j6XLl3Cb7/9Bh8fH7PqY8gSEZHZjEYjDh8+jOzsbJw9exZnz541uWXGxsYGISEh+Pvf/47+/ftLWktcXBxiY2MREhKCsLAwJCYmQqvVYu7cuQCAmJgY+Pn5ISEhAQDw1ltvIT4+Hlu2bEFAQID43W2HDh3QoUMH3LhxA6tWrcK0adPg7e2Ns2fP4rnnnkPv3r0RGRlpVm0MWSIiarBr167hm2++wVdffYWSkpJay3v16oUJEyZg/PjxtS5Gkkp0dDSuXLmC+Ph4qFQqBAUFIT09XXz/4uJik9PUH374IfR6PaZPn26ynpUrV+KVV16Bra0tjh07hk8//RSVlZXw9fXFuHHj8Nprr8HR0dGs2nifLBER3ZVOp8OGDRuQnJyM6upqAICLiwvGjh2Lfv36oXfv3ujZsyc6dOggWQ3WmAU8kiUionodPXoUr732GoqLiwEAAwYMwPTp0zFu3DiTK3KpNoYsERHd0dWrV7F+/Xp8/fXXAG5dybt8+XKMGjXKsoVZEYYsERGZqK6uRkpKCjZs2ICqqioAQFRUFJYsWQIXFxcLV2ddGLJERATg1uARe/fuxdq1a3Hx4kUAt04NP/vss3e9j5TujCFLREQ4fvw4EhMT8d///hcA0KlTJyxatAiTJk1qUSM0WRuGLBFRGyUIAnJzc7FlyxZkZGQAABwdHTFr1izExsaiXbt2Fq7Q+jFkiYjaGKPRiPT0dHz66ac4e/YsgFuDRzz00EN4+umn4enpaeEKWw+GLBFRG2E0GrFr1y5s2LBBvB3HyckJEydORHR0NHr27GnhClufRp1oX79+PQICAuDk5AS5XI7s7Ow6244aNQo2Nja1pokTJza6aCIiajidToe0tDQ88sgjePnll1FcXAw3NzcsXLgQP/zwA1asWMGAlYjZR7Lbtm1DXFwckpKSIJfLkZiYiMjISJw+ffqOpxhSU1Oh1+vF17/99hsCAwPxyCOP/LXKiYioTtXV1Th8+DB2796NjIwM8VYcV1dXzJ49G9HR0fzOtRmYPayiXC5HaGgo1q1bB+DW6Qd/f38sXrwYy5cvv2v/xMRExMfHo7S0FO3bt79jG51OB51OJ77WaDTw9/e3qqG0iIiak06nw5kzZ3Dy5Enk5+fjwIED0Gg04nIfHx9MnToVM2bMsNpwbfXDKur1euTk5GDFihXiPJlMBoVCgczMzAatY+PGjZgxY0adAQsACQkJWLVqlTmlERG1OSdOnEBqaipOnDiBwsJCGI1Gk+WdO3fG2LFjERkZiYEDB0ryqDmqn1khW1FRAYPBUOvJCl5eXjh16tRd+2dnZyM/Px8bN26st92KFSsQFxcnvr59JEtEREBBQQGSkpLE225u69SpE/r164cBAwYgJCQEgwcP5j2uFtasVxdv3LgR9913H8LCwupt5+joaPbjhIiIWrvz58/j448/xu7duwHcOpM4fvx4PPDAA+jfvz88PT15tNrCmBWyHh4esLW1RVlZmcn8srIyeHt719tXq9UiJSUFr776qvlVEhG1YcXFxVi3bh327dsnnhIeN24c5s+fj4CAAMsWR/UyK2QdHBwQHBwMpVKJqKgoALcufFIqlVi0aFG9fbdv3w6dTodZs2Y1ulgioramtLQUDz/8sPh65MiRePrpp9GnTx8LVkUNZfbp4ri4OMTGxiIkJARhYWFITEyEVqvF3LlzAQAxMTHw8/NDQkKCSb+NGzciKioKnTt3bprKiYhauZKSEvFOjtvWrFnD71mtiNkhGx0djStXriA+Ph4qlQpBQUFIT08XL4YqLi6u9Qtw+vRpHDhwQPwegYiI6nb8+HF8/vnn2Lt3r3h6ePDgwVi9ejUD1sqYfZ+sJVjjvVFERObKzs5GUlISjh07Js4bMmQIZs6ciSFDhrT5i5qsMQs4djERkYVdvHgRiYmJ4i059vb2ePDBBzFz5kz06tXLwtXRX8GQJSKyEK1Wi40bN2Lr1q2orq6GTCbDI488gieeeILXr7QSDFkiomZmNBrx3XffYd26dbh69SqAW6eF4+LiOFB/K8OQJSJqJhqNBunp6fjqq6/E57h269YNy5YtQ0RERJv/zrU1YsgSEUnIaDTiyJEj+Prrr7F3717xqWTt27fHvHnzEB0dDXt7ewtXSVJhyBIR3UVNTQ2eeOIJDBo0CM8880yDnmKjUqnw7bff4ttvv0VJSYk4v0+fPpgyZQomTJhgNVfIUuMxZImI7uL48eM4ceIELl++bPLwkj/T6/XIyMjAN998g8OHD+P2HZIdOnTA+PHjMWXKFPTr14+nhdsQhiwR0V0cOnQIABAeHn7HwSA0Gg22bt2KL774Amq1WpwfEhKCKVOm4IEHHuBDT9oohiwR0V0cPHgQADB06FCT+RqNBsnJyUhJSYFWqwUAeHp6YtKkSZg8eTK6du3a7LVSy8KQJSKqR0VFBc6cOQPg1m02AKBWq8VwraqqAgD07t0b8+bNw+jRozn0IYkYskRE9cjMzAQADBgwADKZDOvWrcMXX3whhus999yDv/3tbxg1ahTDlWphyBIR1eN2yFZWVuKhhx7C77//DuBWuM6fPx8jRoxguFKdGLJERHUwGAw4fPgwAIi34fTr1w/z58/H8OHDeZUw3RVDloioDhqNBhqNBgDQv39/zJ8/nyMzkVkYskREdXB3d0diYiLs7e0RFhbGcCWzMWSJiOoRERFh6RLIivHbeiIiIokwZImIiCTCkCUiIpIIQ5aIiEgiDFkiIiKJMGSJiIgkwpAlIqJmtX79egQEBMDJyQlyuRzZ2dn1tt++fTv69esHT09PAMDu3btNlguCgPj4ePj4+MDZ2RkKhQIFBQWS1W8OhiwRETWbbdu2IS4uDitXrkRubi4CAwMRGRmJ8vLyO7Y/dOgQHnvsMTz55JP4+eefAQCPP/448vPzxTZvv/023n//fSQlJSErKwvt27dHZGQkbt682SzbVB8bQRAESxdxNxqNBm5ublCr1XB1dbV0OURE1EhyuRyhoaFYt24dAMBoNMLf3x+LFy/G8uXLa7WPjo6GVqvFd999J2ZBSEgIgoODkZSUBEEQ4Ovri3/84x949tlnAdx6FKGXlxc2b96MGTNmNOv2/RmPZImIqFno9Xrk5ORAoVCI82QyGRQKhfi0oz/LzMw0aQ8AY8aMEdsXFRVBpVKZtHFzc4NcLq9znc2JIUtERABuHVWeOHECX331lSTrr6iogMFggJeXl8l8Ly8vqFSqO/ZRqVS12nfp0kVsf/unOetsThy7mIioDaupqcHhw4exf/9+7N+/HxUVFbCxscHo0aPRqVMnS5dn9RiyRERtkMFgQFpaGjZs2CA+KxcA2rVrh6FDh0Kr1TZ5yHp4eMDW1hZlZWUm88vKyuDt7X3HPt7e3rXaX7lyRWx/+2dZWRl8fHxM1hkUFNSE1TcOTxcTEbUhRqMR6enpeOSRR7Bq1SqUlJTA3d0djzzyCNauXYuffvoJq1evhr+/f5O/t4ODA4KDg6FUKk3qUSqVCA8Pv2Of8PBwk/YAsHfvXrF9jx494O3tbdJGo9EgKyurznU2Jx7JEhG1ATU1Nfjhhx+wadMmFBcXA7h1gVBsbCweffRRODk5NUsdcXFxiI2NRUhICMLCwpCYmAitVou5c+cCAGJiYuDn54eEhAQAwJIlSzBy5Ej885//xMiRIwEAR48excaNGwEANjY2WLp0KV5//XX06dMHPXr0wMsvvwxfX19ERUU1yzbVhyFLRNSK6fV6fPvtt9i8eTNKS0sBAK6urpg1axZmzJiBdu3aNWs90dHRuHLlCuLj46FSqRAUFIT09HTxwqXi4mLIZP87yTp06FBs2bIFL730El544QUAwJYtWzBw4ECxzXPPPQetVov58+ejsrISERERSE9Pb7YPDvVp1H2y69evx5o1a6BSqRAYGIi1a9ciLCyszvaVlZV48cUXkZqaiqtXr6J79+5ITEzEhAkTGvR+vE+WiMg8Go0G33//Pf7zn//gypUrAIBOnTph1qxZmD59erOHa1Owxiww+0j29mgdSUlJkMvlSExMRGRkJE6fPi0OefVHer0eY8eOhaenJ7788kv4+fnhwoUL6NixY1PUT0RE/0ej0SAjIwM//vgjsrKyYDAYAACenp6IiYnB1KlT4ejoaOEq2xazj2TNHa0jKSkJa9aswalTp2Bvb9+oIq3x0wsRUXMwGo3Izs7Gjh07kJGRgZqaGnFZ79698eijj2LSpElwcHCwYJVNwxqzwKwj2dujdaxYsUKcd7fROr755huEh4dj4cKF+Prrr9GlSxc8/vjjeP7552Fra3vHPjqdDjqdTnyt0WjMKZOIqNUrKyvD999/j507d5rcgtO7d2+MHTsWCoUC3bt3t2CFBJgZsvWN1nHq1Kk79jl37hz27NmDmTNnIi0tDYWFhXjmmWdQXV2NlStX3rFPQkICVq1aZU5pREStml6vR15eHg4dOoRDhw7h3Llz4rIOHTpgwoQJiIqKwj333GPBKunPJL+62Gg0wtPTEx9//DFsbW0RHByMy5cvY82aNXWG7IoVKxAXFye+1mg0ktyzRUTUUgmCgHPnzuHw4cM4fPgwcnNzTc7wyWQyBAUFYcqUKRgzZkyLuJKWajMrZBszWoePjw/s7e1NTg33798fKpUKer3+jt8TODo68st5ImqTtFotkpOTkZqaioqKCpNlHh4eGDp0KMLDwyGXy63me8m2zKyQ/eNoHbdv8r09WseiRYvu2GfYsGHYsmULjEajeO/TmTNn4OPj0yq+iCciago6nQ5ffPEFNm3aJF6H4ujoiODgYMjlcgwZMgQ9e/aEjY2NhSslc5h9utjc0ToWLFiAdevWYcmSJVi8eDEKCgrw5ptv4u9//3vTbgkRkRUqKyvDTz/9hOTkZPHB5QEBAXjqqacwcuRIHoxYObND1tzROvz9/bFr1y4sW7YMgwYNgp+fH5YsWYLnn3++6baCiMhKGI1GFBYWIisrC3v27MHx48fFZd7e3pg/fz4mTpxY590XZF0aNeJTc7PGe6OIiG67ePEi9uzZg9zcXPz3v//FjRs3xGU2NjYIDAzE+PHjMXnyZB651sMas4BjFxMRSUAQBBw7dgyfffYZMjIy8MfjmXbt2iEoKAjDhw/H6NGj4eHhYcFKSUoMWSKiJmQwGJCRkYHPPvvM5FRweHg4wsPDMXjwYPTp04eng9sIhiwR0V9048YNZGZmYv/+/Th48KB4dbCDgwMmTJiAmTNnokePHhaukiyBIUtE1AB6vR5HjhyBXq9Hu3bt4OTkhJMnTyIjIwM5OTniYPwA4O7ujmnTpuHRRx9Fp06dLFg1WRpDloioHmfOnMGOHTuQnp6O69ev19kuICAAI0aMwIgRIzBo0CCTuyyo7WLIEhH9yc2bN7F7926kpqYiPz9fnO/p6QkvLy9UVVXh999/h4+PD0aMGIHhw4ejW7duFqyYWiqGLBERbl0NXFBQgJ07dyItLU28zcbW1hajR49GVFQUwsLCeIRKZmHIElGb9fvvv+PIkSM4ePAgDh48iNLSUnGZn58fpk6dismTJ/N7VWo0hiwRtSmXLl3CwYMHceDAAeTk5ECv14vLHBwcEBERgWnTpiE0NJRHrfSXMWSJqE0oLi7G2rVrsXfvXpP5Pj4+GDZsGIYNG4aQkBA4OztbqEJqjRiyRNSqVVZWYsOGDfjyyy9hMBggk8kwePBgMVh79OjBJ9uQZBiyRNQq6fV6pKSkYOPGjdBqtQCA4cOHY/HixejZs6eFq6O2giFLRK2K0WjEjz/+iHXr1okXMt1zzz1YunQpwsLCLFwdtTUMWSJqFQRBQFZWFj744AOcOHECwK37WhcuXIgHH3yQFzGRRTBkiciqVVdXY9euXUhOTkZBQQGAW0+5mTNnDh5//HE4OTlZuEJqyxiyRGSVNBoNUlNTsW3bNly5cgUA4OzsjClTpuCJJ57gva3UIjBkiciqlJSUYMuWLfj666/x+++/AwA8PDwwY8YMPPzww1bzMG9qGxiyRGQV8vPz8fnnn2PPnj0wGo0AgN69e2P27NkYN24c7O3tLVwhUW0MWSJqsYxGI/bv34/PPvsM//3vf8X5Q4YMwezZsxEWFsZ7XKlFY8gSUYtUUlKChQsX4uLFiwAAOzs7PPjgg5g5cyZ69+5t4eqIGoYhS0Qtkre3NwwGA1xcXDB9+nQ8+uij6NKli6XLIjILQ5aIWiSZTIZ33nkHXbt2Rbt27SxdDlGjMGSJqMW65557LF0C0V/CIVCIiIgkwpAlIiKSCEOWiIhIIgxZIiIiiTBkiYiIJMKQJSIikghDloiISCIMWSIiIokwZImIiCTSqJBdv349AgIC4OTkBLlcjuzs7Drbbt68GTY2NiaTk5NTowsmIiKyFmaH7LZt2xAXF4eVK1ciNzcXgYGBiIyMRHl5eZ19XF1dUVpaKk4XLlz4S0UTERFZA7ND9t1338W8efMwd+5cDBgwAElJSWjXrh0++eSTOvvY2NjA29tbnLy8vP5S0URERNbArJDV6/XIycmBQqH43wpkMigUCmRmZtbZ78aNG+jevTv8/f0xZcoU/Prrr/W+j06ng0ajMZmIiIisjVkhW1FRAYPBUOtI1MvLCyqV6o59+vbti08++QRff/01Pv/8cxiNRgwdOhSXLl2q830SEhLg5uYmTv7+/uaUSURE1CJIfnVxeHg4YmJiEBQUhJEjRyI1NRVdunTBRx99VGefFStWQK1Wi9PFixelLpOIqNUSBAHx8fHw8fGBs7MzFAoFCgoK6u3z4YcfYtCgQXB1dYWrqyvCw8Pxww8/mLS5efMmFi5ciM6dO6NDhw6YNm0aysrKpNwUq2NWyHp4eMDW1rbWTiwrK4O3t3eD1mFvb4/7778fhYWFdbZxdHQU/2JvT0RE1Dhvv/023n//fSQlJSErKwvt27dHZGQkbt68WWefrl27YvXq1cjJycGRI0fwwAMP1Pq6b9myZfj222+xfft2ZGRkoKSkBA8//HBzbJL1EMwUFhYmLFq0SHxtMBgEPz8/ISEhoUH9a2pqhL59+wrLli1r8Huq1WoBgKBWq80tl4ioTTMajYK3t7ewZs0acV5lZaXg6OgobN261ax1ubu7C//+97/Fddjb2wvbt28Xl588eVIAIGRmZjZN8X9ijVlg9uniuLg4bNiwAZ9++ilOnjyJBQsWQKvVYu7cuQCAmJgYrFixQmz/6quvYvfu3Th37hxyc3Mxa9YsXLhwAX/729+a6GMCERHVpaioCCqVyuSCVTc3N8jl8novWP0jg8GAlJQUaLVahIeHAwBycnJQXV1tst5+/fqhW7duDV5vW2Bnbofo6GhcuXIF8fHxUKlUCAoKQnp6ungxVHFxMWSy/2X3tWvXMG/ePKhUKri7uyM4OBiHDh3CgAEDmm4riIishNFoRGFhIUpKSsSxA0JDQzF8+HBJ3u/2RanmXLB62/HjxxEeHo6bN2+iQ4cO2LFjh/h/t0qlgoODAzp27Gj2etsSs0MWABYtWoRFixbdcdm+fftMXr/33nt47733GvM2REStRk1NDdLS0rB582YUFxfXWt5UIZucnIynnnpKfP399983el19+/ZFXl4e1Go1vvzyS8TGxiIjI4MHSWZoVMgSEdHdGY1G5OfnQ6lU4scffxRHxmvXrh0CAgLg4+MDHx8fhIaGNtl7Tp48GXK5XHyt0+kA3LpA1cfHR5xfVlaGoKCgetfl4OCA3r17AwCCg4Pxyy+/4F//+hc++ugjeHt7Q6/Xo7Ky0uRo1pwLYdsChiwRURO7du0aduzYga+++srkbozOnTtj1qxZmDZtGtq1ayfJe7u4uMDFxUV8LQgCvL29oVQqxVDVaDTIysrCggULzFq30WgUQzs4OBj29vZQKpWYNm0aAOD06dMoLi4Wv7clhiwR0V9WXl6OU6dOobCwEKdOncKBAweg1+sB3DpqHTlyJMaMGYOhQ4fCwcGhWWuzsbHB0qVL8frrr6NPnz7o0aMHXn75Zfj6+iIqKkpsN2bMGEydOlX8KnDFihV48MEH0a1bN1y/fh1btmzBvn37sGvXLgC3Lp568sknERcXh06dOsHV1RWLFy9GeHg4hgwZ0qzb2JIxZImIGqG8vBw//vgjdu3ahRMnTtRaPmDAAMyYMQMKhaLZg/XPnnvuOWi1WsyfPx+VlZWIiIhAenq6yRPRzp49i4qKCvF1eXk5YmJiUFpaCjc3NwwaNAi7du3C2LFjxTbvvfceZDIZpk2bBp1Oh8jISHzwwQfNum0tnY0gCIKli7gbjUYDNzc3qNVqDkxBRBZz8eJF7N27F3v37sXx48fF+TKZDL169UKfPn3Qu3dvBAcH495777Vgpa2TNWYBj2SJiOpRXV2NvXv34ssvv0Rubq7JsqCgIERGRmLMmDHo1KmThSqklowhS0R0B0VFRUhLS8PXX3+Nq1evArh1xBoSEoIHHngAI0eORJcuXSxcJbV0DFkianOqqqqQl5eHI0eOICcnB9evX8e9996LwMBA6PV6/PDDDzh58qTY3sPDA1OnTsXUqVPh6elpwcrJ2jBkiahVMxqNKCoqQn5+PvLz83H8+HGcO3cORqPRpF1xcbHJU2ZsbW0xbNgwTJo0CSNGjICdHf+7JPPxt4aIWpWrV6/i2LFjYqieOHECVVVVtdr5+voiJCQEISEhcHd3x/Hjx5GXlweDwYAxY8Zg3LhxtYYMJDIXQ5aIrJogCDhz5gz279+Pn3/++Y630zg7O2PAgAEYOHAg7rvvPgwcOBAeHh4mbTiAAkmBIUtEVkUQBFy6dAl5eXk4evQoDh8+LA5XeFuvXr0wcOBAcerZsydsbW0tVDG1ZQxZImrxrl69iuzsbBw+fBjZ2dm1QtXJyQlDhgzBiBEjEBERwdtpqMVgyBJRi6PVapGfn4+srCwcPnwYZ86cMVlub2+Pe++9F0FBQRg8eDBCQkIsPqoS0Z0wZIlIclVVVTh69CiysrJw6tQpeHh4ICAgAAEBAfDz80NZWRkKCgpw5swZFBQUoKSkpNY67rnnHgwZMgRDhgxBYGAgHB0dLbAlROZhyBJRkzMYDDh58iSysrKQlZWFY8eOoaamxqx1eHl5ISwsDHK5HGFhYTwFTFaJIUtETeLSpUs4fPgwsrKy8Msvv+DGjRsmy319fTFkyBAMGjQIV69exYULF3D+/HlcunQJnp6e6NOnj8nk5uZmoS0hajoMWSJqEv/85z/x888/i69dXFwQGhoKuVwOuVyOrl27WrA6IstgyBJRkxg2bBi0Wi2GDBkCuVyO/v37QyaTWbosIovio+6IiMgqWGMW8GMmERGRRBiyREREEmHIEhERSYQhS0REJBGGLBERkUQYskRERBJhyBIREUmEIUtERCQRhiwREZFEGLJEREQSYcgSERFJhCFLREQkkUaF7Pr16xEQEAAnJyfI5XJkZ2c3qF9KSgpsbGwQFRXVmLclIiKyKmaH7LZt2xAXF4eVK1ciNzcXgYGBiIyMRHl5eb39zp8/j2effRbDhw9vdLFERETWxOyQfffddzFv3jzMnTsXAwYMQFJSEtq1a4dPPvmkzj4GgwEzZ87EqlWr0LNnz79UMBERkbUwK2T1ej1ycnKgUCj+twKZDAqFApmZmXX2e/XVV+Hp6Yknn3yyQe+j0+mg0WhMJiIiImtjVshWVFTAYDDAy8vLZL6XlxdUKtUd+xw4cAAbN27Ehg0bGvw+CQkJcHNzEyd/f39zyiQiImoRJL26+Pr165g9ezY2bNgADw+PBvdbsWIF1Gq1OF28eFHCKomIiKRhZ05jDw8P2NraoqyszGR+WVkZvL29a7U/e/Yszp8/j4ceekicZzQab72xnR1Onz6NXr161ern6OgIR0dHc0ojIiJqccw6knVwcEBwcDCUSqU4z2g0QqlUIjw8vFb7fv364fjx48jLyxOnyZMnY/To0cjLy+NpYCIiatXMOpIFgLi4OMTGxiIkJARhYWFITEyEVqvF3LlzAQAxMTHw8/NDQkICnJycMHDgQJP+HTt2BIBa84mIiFobs0M2OjoaV65cQXx8PFQqFYKCgpCeni5eDFVcXAyZjANJERER2QiCIFi6iLvRaDRwc3ODWq2Gq6urpcshIiILsMYs4CEnERGRRBiyREREEmHIEhERSYQhS0REJBGGLBERkUQYskRERBJhyBIREUmEIUtERCQRhiwREZFEGLJEREQSYcgSERFJhCFLREQkEYYsERGRRBiyREREEmHIEhERSYQhS0REJBGGLBERkUQYskRERBJhyBIREUmEIUtERCQRhiwREZFEGLJEREQSYcgSERFJhCFLREQkEYYsERGRRBiyREREEmHIEhERSYQhS0REJBGGLBERkUQYskRERBJhyBIREUmEIUtERCQRhiwREZFEGhWy69evR0BAAJycnCCXy5GdnV1n29TUVISEhKBjx45o3749goKC8NlnnzW6YCIiImthdshu27YNcXFxWLlyJXJzcxEYGIjIyEiUl5ffsX2nTp3w4osvIjMzE8eOHcPcuXMxd+5c7Nq16y8XT0RE1JLZCIIgmNNBLpcjNDQU69atAwAYjUb4+/tj8eLFWL58eYPWMXjwYEycOBGvvfbaHZfrdDrodDrxtUajgb+/P9RqNVxdXc0pl4iIWgmNRgM3NzerygKzjmT1ej1ycnKgUCj+twKZDAqFApmZmXftLwgClEolTp8+jREjRtTZLiEhAW5ubuLk7+9vTplEREQtglkhW1FRAYPBAC8vL5P5Xl5eUKlUdfZTq9Xo0KEDHBwcMHHiRKxduxZjx46ts/2KFSugVqvF6eLFi+aUSURE1CLYNcebuLi4IC8vDzdu3IBSqURcXBx69uyJUaNG3bG9o6MjHB0dm6M0IiIiyZgVsh4eHrC1tUVZWZnJ/LKyMnh7e9fZTyaToXfv3gCAoKAgnDx5EgkJCXWGLBERUWtg1uliBwcHBAcHQ6lUivOMRiOUSiXCw8MbvB6j0WhyYRMREVFrZPbp4ri4OMTGxiIkJARhYWFITEyEVqvF3LlzAQAxMTHw8/NDQkICgFsXMYWEhKBXr17Q6XRIS0vDZ599hg8//LBpt4SIiKiFMTtko6OjceXKFcTHx0OlUiEoKAjp6enixVDFxcWQyf53gKzVavHMM8/g0qVLcHZ2Rr9+/fD5558jOjq66baCiIioBTL7PllLsMZ7o4iIqGlZYxZw7GIiIiKJMGSJiIgkwpAlIiKSCEOWiIhIIgxZIiIiiTBkiYiIJMKQJSIikghDloiISCIMWSIiIokwZImIiCTCkCUiIpIIQ5aIiEgiDFkiIiKJMGSJiIgkwpAlIiKSCEOWiIhIIgxZIiIiiTBkiYiIJMKQJaI63bx5EydPnoTBYJBk/ampqRg3bhw6d+4MGxsb5OXlNajf9u3b0a9fPzg5OeG+++5DWlqayXJBEBAfHw8fHx84OztDoVCgoKBAgi0gqh9DlohMVFVVYefOnVi2bBkiIiIwe/ZsJCcnS/JeWq0WEREReOuttxrc59ChQ3jsscfw5JNP4ujRo4iKikJUVBTy8/PFNm+//Tbef/99JCUlISsrC+3bt0dkZCRu3rwpxWYQ1clGEATB0kXcjUajgZubG9RqNVxdXS1dDlGrdOHCBXzxxRf49ttvUVVVZbLshRdewMMPPyzZe58/fx49evTA0aNHERQUVG/b6OhoaLVafPfdd+K8IUOGICgoCElJSRAEAb6+vvjHP/6BZ599FgCgVqvh5eWFzZs3Y8aMGZJtB0nLGrOAR7JEbVh5eTmSk5MRGxuLadOmYdu2baiqqkL37t3FNt27d8ekSZMsWKWpzMxMKBQKk3mRkZHIzMwEABQVFUGlUpm0cXNzg1wuF9sQNRc7SxdARM0vPz8fmzZtQkZGhjhPJpMhIiIC0dHRsLGxwTPPPAMAePnll+Hg4GCpUmtRqVTw8vIymefl5QWVSiUuvz2vrjZEzYUhS9RGGI1GZGdn49NPP8Uvv/wizr///vsxbtw4jBkzBp06dQIAnDx5Er169cLgwYPvevq2oZKTk/HUU0+Jr3/44QcMHz68SdZN1FIxZIlaud9++w3ffvstduzYgcuXLwMAbG1tMXHiRMTGxpqcGr6tf//++Pzzz1FTU9NkdUyePBlyuVx87efn16j1eHt7o6yszGReWVkZvL29xeW35/n4+Ji0aaoPDEQNxZAlaoUuX76MAwcO4MCBA8jOzhZvwWnfvj0eeughzJo1Swyjutjb28Pe3r7JanJxcYGLi8tfXk94eDiUSiWWLl0qzvvxxx8RHh4OAOjRowe8vb2hVCrFUNVoNMjKysKCBQv+8vsTmYMhS9QKVFdXIy8vTwzWCxcumCwfNGgQpk6dCoVCAWdnZwtVWdvVq1dRXFyMkpISAMDp06cB3Doavf0hICYmBn5+fkhISAAALFmyBCNHjsQ///lPTJw4ESkpKThy5Ag+/vhjAICNjQ2WLl2K119/HX369EGPHj3w8ssvw9fXF1FRUc2/kdSmMWSJrNiZM2ewefNmHDhwwOS2G1tbWwQFBSEiIgLDhw9HQECA5YqsxzfffIO5c+eKr2/fXrNy5Uq88sorAIDi4mLIZP+7EWLo0KHYsmULXnrpJbzwwgvo06cPdu7ciYEDB4ptnnvuOWi1WsyfPx+VlZWIiIhAeno6nJycmmfDiP4P75MlskLnzp3Dxx9/jJ9++kmc16lTJwwdOhQREREYMmQIOnToYMEKiZqeNWYBj2SJrER1dTUyMjKQmpqK7Oxscf64cePw+OOPY8CAASZHfERkeQxZohZOq9Xi008/xc6dO3H16lUAt753HDVqFObPn48+ffpYuEIiqgtDlqgFKy8vx5IlS8TB7Tt37iyO1fvH21OIqGVq1Lml9evXIyAgAE5OTpDL5Sanrv5sw4YNGD58ONzd3eHu7g6FQlFveyK6paCgAHPmzEFBQQE6d+6Mt956C99//z0WLFjAgCWyEmaH7LZt2xAXF4eVK1ciNzcXgYGBiIyMRHl5+R3b79u3D4899hj27t2LzMxM+Pv7Y9y4ceJN8URkqqamBkqlEk8++STKy8vRo0cPbNq0CWPGjIGdHU8+EVkTs68ulsvlCA0Nxbp16wDcGqrN398fixcvxvLly+/a32AwwN3dHevWrUNMTEyD3tMarygjMofBYEBOTg5++uknKJVKqNVqAMDgwYPxzjvv8PeeCNaZBWZ9LNbr9cjJycGKFSvEeTKZDAqFosFPt6iqqkJ1dbU4Ruqd6HQ66HQ68bVGozGnTCKrYDQakZeXh927d2PPnj3iRU0A4O7ujkmTJmHBggUtanB+IjKPWSFbUVEBg8Fwx6dbnDp1qkHreP755+Hr61vrUVV/lJCQgFWrVplTGlGLJwgCSktLceTIERw5cgRZWVn47bffxOWurq4YM2YMxo4di+DgYNja2lqwWiJqCs36Bc/q1auRkpKCffv21TvyyooVKxAXFye+1mg08Pf3b44SiZpUaWkpcnJyxGD986PWXFxcMHr0aIwdOxahoaH8zpWolTHrX7SHhwdsbW3rfQJGXd555x2sXr0aP/30EwYNGlRvW0dHRzg6OppTGpFFCYKAwsJCnDlzBoWFhTh79iwKCwtrXRBoa2uLe++9FyEhIQgJCcH999/fpIPwE1HLYlbIOjg4IDg4GEqlUhxo22g0QqlUYtGiRXX2e/vtt/HGG29g165dCAkJ+UsFE7UkgiDgl19+QVJSEo4dO1ZruUwmw7333ovg4GCEhIQgMDCwRQ3QT0TSMvvcVFxcHGJjYxESEoKwsDAkJiZCq9WKg3z/+YkZb731FuLj47FlyxYEBASIp8s6dOjAsVXJquXk5CApKQlHjx4FcOtD6MCBA9G7d2+TqV27dhaulIgsxeyQjY6OxpUrVxAfHw+VSoWgoCCkp6eLF0P9+YkZH374IfR6PaZPn26ynj8+ZYPImuTm5uKjjz5CTk4OgFvh+vDDD2POnDnw8PCwcHVE1JLwKTxEDWAwGPDzzz9j27Zt+OWXXwDceqj51KlTMWfOHHh6elq4QqLWzxqzgJcyEtWjrKwMO3fuxM6dO3HlyhUAgJ2dHaZMmYInnnii1u1sRER/xJAl+hOj0YhDhw4hNTUVBw4cgNFoBHBrgIjJkydj+vTpHDuYiBqEIUttgiAIMBgMqKmpQXV1Naqrq1FTUyO+rqmpgU6nQ2ZmJnbs2GFyP2twcDCmTZuGUaNGcfQlIjILQ5asmlarRUxMDGpqamAwGMQgvf3z9nT7aLShXF1dMWnSJDz88MMICAiQpngiavUYsmTVbGxscOHChUb1tbOzg52dHezt7WFvbw87Ozt07doVUVFRUCgUPGolor+MIUtWzcnJCRs2bICtra0Ymrf//Meft/98O0zt7OxgY2Nj6fKJqJVjyJJVk8lkuP/++y1dBhHRHZn90HYiIiJqGIYsERGRRBiyREREEmHIEhERSYQhS0REJBGGLBERkUQYskRERBJhyBIREUmEIUtERCQRhiwREZFEGLJEREQSYcgSERFJhCFLREQkEYYsERGRRBiyREREEmHIEhERSYQhS0REJBGGLBERkUQYskRERBJhyBIREUmEIUtERCQRhiwREZFE7CxdQFui0+lQWlqKGzduwNXVFR07dkSHDh0gk/GzDhFRa8SQbUJVVVUoLS1FSUkJSktLxamkpAQqlQpXr16t1Ucmk8HNzQ0dO3YUJ1dXVzg4OMDOzg52dnawt7cX/2xnZwcHBwc4ODjA0dFR/BkQEIBu3bpZYKuJiKgubSZkCwoKcPPmTbi7u6Njx45o3749bGxszF6PwWDA5cuXUVRUZDJdunQJGo3mrv3btWsHV1dXaDQaVFVVwWg04tq1a7h27VpjNkvk4OCAlJQUBi0RUQvSqJBdv3491qxZA5VKhcDAQKxduxZhYWF3bPvrr78iPj4eOTk5uHDhAt577z0sXbr0r9TcKElJScjIyBBf29nZiUeOt4P39s8/TlevXkVRURHOnz+PoqIiXLx4EdXV1XW+j6urK3x8fODj4wNfX194e3vD19dXnOfi4iKGu16vh1qtRmVlpfizsrISGo0Ger0eNTU14lRdXW3yU6fTQa/XQ6fT4dKlSygvL0diYiLeffddyfclERE1jNkhu23bNsTFxSEpKQlyuRyJiYmIjIzE6dOn4enpWat9VVUVevbsiUceeQTLli1rkqIbo2PHjvD19cW1a9fw+++/o6amBhUVFaioqDB7XbdPz/bo0UP82a1bN/j6+qJ9+/YNXo+DgwO6dOmCLl26mF3DHxUVFSE6Ohr79+9HdnZ2nR94WoLq6mq89NJLSEtLw7lz5+Dm5gaFQoHVq1fD19e3zn4JCQlITU3FqVOn4OzsjKFDh+Ktt95C3759xTY3b97EP/7xD6SkpECn0yEyMhIffPABvLy8mmPTiIhqsREEQTCng1wuR2hoKNatWwcAMBqN8Pf3x+LFi7F8+fJ6+wYEBGDp0qVmH8lqNBq4ublBrVbD1dXVrL53otPpoFarce3aNVRWVtb5s7KyEq6urujRo4cYqAEBAfD29m5xFyu98847SElJgaurK+Lj4zFq1ChLl3RHarUa06dPx7x58xAYGIhr165hyZIlMBgMOHLkSJ39xo8fjxkzZiA0NBQ1NTV44YUXkJ+fjxMnTogfbBYsWIDvv/8emzdvhpubGxYtWgSZTIaDBw821+YRkYSaOguahWAGnU4n2NraCjt27DCZHxMTI0yePPmu/bt37y689957d2138+ZNQa1Wi9PFixcFAIJarTan3DZFo9EIMTExQnBwsBAcHCysWrXKavZXdna2AEC4cOFCg/uUl5cLAISMjAxBEAShsrJSsLe3F7Zv3y62OXnypABAyMzMbPKaiaj5qdVqq8sCsw7HKioqYDAYap1+8/LygkqlaqrcR0JCAtzc3MTJ39+/ydbdWrm4uODf//43Zs2aBQD45ptvMH36dKSmpqKmpuau/ffv34/3338f5eXlUpdai1qtho2NDTp27GhWHwDo1KkTACAnJwfV1dVQKBRim379+qFbt27IzMxs0nqJiBqqRV5dvGLFCsTFxYmvNRoNg7YB7O3tsXTpUowePRpvvPEGzp07hzfffBObNm2Cs7Mzampq0LVrV/j5+aFr167w8fGBt7c3vLy8sGbNGpSWluI///kPnnjiCTz99NPNckr85s2beP755/HYY481+PSP0WjE0qVLMWzYMAwcOBAAoFKp4ODgUCuom/oDIBGROcwKWQ8PD9ja2qKsrMxkfllZGby9vZusKEdHRzg6OjbZ+tqawMBAJCcn46uvvsInn3yC0tJScVlxcfFd+58/f77JAjY5ORlPPfWU+PqHH37A8OHDAdy6COrRRx+FIAj48MMPG7zOhQsXIj8/HwcOHGiSGomIpGJWyDo4OCA4OBhKpRJRUVEAbh1VKJVKLFq0SIr6qJHs7e0xY8YMTJkyBQcPHkT79u1hZ2eHy5cv4/Lly7h06RJUKhXKyspw5coVCP93/Vu3bt2a9O9y8uTJkMvl4ms/Pz8A/wvYCxcuYM+ePQ0+il20aBG+++477N+/H127dhXne3t7Q6/Xo7Ky0uRotqk/ABIRmcPs08VxcXGIjY1FSEgIwsLCkJiYCK1Wi7lz5wIAYmJi4Ofnh4SEBAC37gU9ceKE+OfLly8jLy8PHTp0QO/evZtwU+hOnJ2dTb6nDA0NrdWmpqYGKpUKKpUK9957L5ydnZvs/V1cXODi4mIy73bAFhQUYO/evejcufNd1yMIAhYvXowdO3Zg37596NGjh8ny4OBg2NvbQ6lUYtq0aQCA06dPo7i4GOHh4U22PUREZmnM1VJr164VunXrJjg4OAhhYWHC4cOHxWUjR44UYmNjxddFRUUCgFrTyJEjG/x+1nhFGd2ZXq8XJk+eLHTt2lXIy8sTSktLxUmn04ntHnjgAWHt2rXi6wULFghubm7Cvn37TPpUVVWJbZ5++mmhW7duwp49e4QjR44I4eHhQnh4eLNuHxFJxxqzwOz7ZC3BKu+Nojs6f/58raPQ2/bu3Sve3xsQEIA5c+bglVdeAYA6h8DctGkT5syZA+B/g1Fs3brVZDAKni4mah2sMQsYskREZBWsMQta1rBFRERErQhDloiISCIMWSIiIokwZImIiCTCkCUiIpIIQ5aIiEgiDFkiIiKJMGSJiIgk0iIfdfdnt8fL0Gg0Fq6EiIgs5XYGWMEYSiKrCNnr168DAJ8pS0REuH79Otzc3CxdRoNYxbCKRqMRJSUlcHFxqXMM27bg9sPrL168aDVDijUn7p+74z6qH/fP3VlyHwmCgOvXr8PX17fJnnktNas4kpXJZCbPDm3rXF1d+R9APbh/7o77qH7cP3dnqX1kLUewt1nHRwEiIiIrxJAlIiKSCEPWijg6OmLlypVwdHS0dCktEvfP3XEf1Y/75+64j8xjFRc+ERERWSMeyRIREUmEIUtERCQRhiwREZFEGLJEREQSYcgSERFJhCHbwqxfvx4BAQFwcnKCXC5HdnZ2g/qlpKTAxsYGUVFR0hZoYebsn82bN8PGxsZkcnJyasZqLcPc36HKykosXLgQPj4+cHR0xD333IO0tLRmqrb5mbN/Ro0aVet3yMbGBhMnTmzGipufub9DiYmJ6Nu3L5ydneHv749ly5bh5s2bzVRtCydQi5GSkiI4ODgIn3zyifDrr78K8+bNEzp27CiUlZXV26+oqEjw8/MThg8fLkyZMqV5irUAc/fPpk2bBFdXV6G0tFScVCpVM1fdvMzdRzqdTggJCREmTJggHDhwQCgqKhL27dsn5OXlNXPlzcPc/fPbb7+Z/P7k5+cLtra2wqZNm5q38GZk7j5KTk4WHB0dheTkZKGoqEjYtWuX4OPjIyxbtqyZK2+ZGLItSFhYmLBw4ULxtcFgEHx9fYWEhIQ6+9TU1AhDhw4V/v3vfwuxsbGtOmTN3T+bNm0S3Nzcmqm6lsHcffThhx8KPXv2FPR6fXOVaFGN+Tf2R++9957g4uIi3LhxQ6oSLc7cfbRw4ULhgQceMJkXFxcnDBs2TNI6rQVPF7cQer0eOTk5UCgU4jyZTAaFQoHMzMw6+7366qvw9PTEk08+2RxlWkxj98+NGzfQvXt3+Pv7Y8qUKfj111+bo1yLaMw++uabbxAeHo6FCxfCy8sLAwcOxJtvvgmDwdBcZTebxv4O/dHGjRsxY8YMtG/fXqoyLaox+2jo0KHIyckRTymfO3cOaWlpmDBhQrPU3NJZxVN42oKKigoYDAZ4eXmZzPfy8sKpU6fu2OfAgQPYuHEj8vLymqFCy2rM/unbty8++eQTDBo0CGq1Gu+88w6GDh2KX3/9tVU+1akx++jcuXPYs2cPZs6cibS0NBQWFuKZZ55BdXU1Vq5c2RxlN5vG7J8/ys7ORn5+PjZu3ChViRbXmH30+OOPo6KiAhERERAEATU1NXj66afxwgsvNEfJLR6PZK3U9evXMXv2bGzYsAEeHh6WLqdFCg8PR0xMDIKCgjBy5EikpqaiS5cu+OijjyxdWothNBrh6emJjz/+GMHBwYiOjsaLL76IpKQkS5fW4mzcuBH33XcfwsLCLF1Ki7Jv3z68+eab+OCDD5Cbm4vU1FR8//33eO211yxdWovAI9kWwsPDA7a2tigrKzOZX1ZWBm9v71rtz549i/Pnz+Ohhx4S5xmNRgCAnZ0dTp8+jV69eklbdDMyd//cib29Pe6//34UFhZKUaLFNWYf+fj4wN7eHra2tuK8/v37Q6VSQa/Xw8HBQdKam9Nf+R3SarVISUnBq6++KmWJFteYffTyyy9j9uzZ+Nvf/gYAuO+++6DVajF//ny8+OKLVvNwdam07a1vQRwcHBAcHAylUinOMxqNUCqVCA8Pr9W+X79+OH78OPLy8sRp8uTJGD16NPLy8uDv79+c5UvO3P1zJwaDAcePH4ePj49UZVpUY/bRsGHDUFhYKH5AA4AzZ87Ax8enVQUs8Nd+h7Zv3w6dTodZs2ZJXaZFNWYfVVVV1QrS2x/aBD5/hrfwtCQpKSmCo6OjsHnzZuHEiRPC/PnzhY4dO4q3ncyePVtYvnx5nf1b+9XF5u6fVatWCbt27RLOnj0r5OTkCDNmzBCcnJyEX3/91VKbIDlz91FxcbHg4uIiLFq0SDh9+rTw3XffCZ6ensLrr79uqU2QVGP/jUVERAjR0dHNXa5FmLuPVq5cKbi4uAhbt24Vzp07J+zevVvo1auX8Oijj1pqE1oUni5uQaKjo3HlyhXEx8dDpVIhKCgI6enp4kUIxcXFbfrUi7n759q1a5g3bx5UKhXc3d0RHByMQ4cOYcCAAZbaBMmZu4/8/f2xa9cuLFu2DIMGDYKfnx+WLFmC559/3lKbIKnG/Bs7ffo0Dhw4gN27d1ui5GZn7j566aWXYGNjg5deegmXL19Gly5d8NBDD+GNN96w1Ca0KHyeLBERkUTa7mERERGRxBiyREREEmHIEhERSYQhS0REJBGGLBERkUQYskRERBJhyBIREUmEIUtERCQRhiwREZFEGLJEREQSYcgSERFJ5P8D9CFSdmO/EI0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(1, figsize=(5,4))\n", "\n", "T = np.linspace(ctTs[0], ctTs[-1], 20)\n", "imf = np.full(T.shape, 1.3)\n", "for Z in ctZs:\n", " mags = emiles.interpolate(age=T, met=np.ones(T.shape)*Z, imf_slope=imf).magnitudes(filts)\n", " gr = mags['SLOAN_SDSS.g'] - mags['SLOAN_SDSS.r']\n", " iJ = mags['SLOAN_SDSS.i'] - mags['2MASS_2MASS.J']\n", " ax.plot(gr, iJ, 'k', alpha=0.8)\n", " ax.text(gr[-1]+0.05, iJ[-1], f\"{Z.value:.2f}\", c='k', horizontalalignment='center', verticalalignment='center')" ] }, { "cell_type": "markdown", "id": "6efc1dc1-9c7d-4740-be8b-029620926372", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "And we repeat the process to add the constant age lines." ] }, { "cell_type": "code", "execution_count": 9, "id": "62bf2b3a-968e-47c5-b90e-cde106a7cbd1", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAF4CAYAAAACO2PHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACD50lEQVR4nO3dd1iT1xcH8G8YAUEBEWUJ4l5VUBTEUUdRXHVUq7YquFtXVbq0bjsc7U+tE+uexVFXFScVWxVFcS/coiIgshSUlfv745gACkjCG8I4n+fJQ/LmHfeNyMld58qEEAKMMcYYKzA9XReAMcYYKyk4qDLGGGMS4aDKGGOMSYSDKmOMMSYRDqqMMcaYRDioMsYYYxLhoMoYY4xJhIMqY4wxJhEOqowxxphEOKgyxhhjEtF5UF26dCmcnJxgbGwMd3d3hISE5Ln/woULUbt2bZQpUwYODg6YMGECXr9+XUilZYwxxnKn06C6detW+Pr6Yvr06Th//jycnZ3h5eWF6OjoHPffsmULJk6ciOnTp+PGjRtYvXo1tm7dih9++KGQS84YY4y9S6bLhPru7u5o2rQplixZAgBQKBRwcHDA2LFjMXHixHf2HzNmDG7cuIHAwEDVtq+//hpnzpzBiRMnCq3cjDHGWE4MdHXh1NRUhIaGYtKkSaptenp68PT0RHBwcI7HNG/eHJs2bUJISAjc3Nxw7949BAQEYODAgbleJyUlBSkpKarXCoUCsbGxqFChAmQymXQ3xBhjrFgRQuDFixews7ODnp40Dbc6C6oxMTHIyMiAtbV1tu3W1ta4efNmjsd8/vnniImJQcuWLSGEQHp6Or788ss8m39nz56NmTNnSlp2xhhjJcejR49QuXJlSc6ls6CqiaCgIPzyyy9YtmwZ3N3dcefOHYwbNw4//vgjpk6dmuMxkyZNgq+vr+p1QkICHB0d8ejRI5iZmRVW0RljjBUxiYmJcHBwQLly5SQ7p86CqpWVFfT19REVFZVte1RUFGxsbHI8ZurUqRg4cCCGDRsGAGjQoAGSkpIwYsQITJ48Ocfqu5GREYyMjN7ZbmZmxkGVMcaYpF2BOhv9K5fL4erqmm3QkUKhQGBgIDw8PHI8Jjk5+Z3Aqa+vD4DaxhljjOXTv/8CH38M2NkBMhmwe3f294UApk0DbG2BMmUAT0/g9u33n3fpUsDJCTA2BtzdgfdMkyxpdDqlxtfXFytXrsT69etx48YNjBw5EklJSRg8eDAAwNvbO9tApo8//hjLly+Hv78/7t+/jyNHjmDq1Kn4+OOPVcGVMcZYPiQlAc7OFARzMm8esGgR4OcHnDkDmJoCXl5AXnkBtm4FfH2B6dOB8+fp/F5eQC7TJEskoWOLFy8Wjo6OQi6XCzc3N3H69GnVe61btxY+Pj6q12lpaWLGjBmievXqwtjYWDg4OIhRo0aJuLi4fF8vISFBABAJCQkS3gVjjBVjgBC7dmW+ViiEsLER4tdfM7fFxwthZCTEn3/mfh43NyFGj858nZEhhJ2dELNnS15kKWgjHuh0nqouJCYmwtzcHAkJCdynyhhjADX/7toF9OhBr+/dA6pXBy5cAFxcMvdr3Zpe//77u+dITQVMTIAdOzLPAwA+PkB8PLBnj9aKryltxAOdpylkjDFWxERG0s+3pjzC2jrzvbfFxAAZGeodUwJxUGWMMcYkwkGVMcZYdsppjW9NeURUVOZ7b7OyAvT11TumBOKgyhhjLLuqVSkQZpnyiMREGgWcy5RHyOWAq2v2YxQKep3bMSVQscqoxBhjTCIvXwJ37mS+vn8fuHgRsLQEHB2B8eOBn34CatakIDt1Ks1pzToI6aOPgJ49gTFj6LWvLw1MatIEcHMDFi6kqTtvpkmWBhxUGWOsNDp3DmjbNvO1Mp2rjw+wbh3w3XcUEEeMoNG7LVsCBw9SUgelu3dpgJJS377As2eUNCIykkYKHzz47uClEoyn1DDGGCuVeEoNY4yVdk5ONK/07cfo0Tnvv27du/tmrW0ySXHzL2OMFSdnz9J8UKWrV4H27YFPP839GDMzICws8zWvJa01HFQZY6w4qVgx++s5cyj7UevWuR8jk5WqaS26xM2/jDFWXKWmAps2AUOG5F37fPkSqFIFcHAAuncHrl0rvDKWMhxUGWOsuNq9m0bmDhqU+z61awNr1lDu3U2baO5o8+bA48eFVMjShYMqY4wVV6tXA5060fzR3Hh4AN7eNL2ldWtg505qQl6xotCKmZulS5fCyckJxsbGcHd3R0gea6+uXLkSrVq1Qvny5VG+fHl4enq+s/+gQYMgk8myPTp27Kjt28iGgypjjBVHDx8CR48Cw4apd5yhIdCoUfbEDzqwdetW+Pr6Yvr06Th//jycnZ3h5eWF6FzWXg0KCsJnn32GY8eOITg4GA4ODujQoQOePHmSbb+OHTvi6dOnqseff/5ZGLejwkGVMcaKo7VrgUqVgC5d1DsuIwO4cgWwtdVOufJp/vz5GD58OAYPHox69erBz88PJiYmWLNmTY77b968GaNGjYKLiwvq1KmDVatWQaFQIDBrWkQARkZGsLGxUT3Kly9fGLejwkGVMcaKG4WCgqqPD2Dw1iQOb29g0qTM17NmAYcP0xqp588DAwZQLVfdGq6EUlNTERoaCk9PT9U2PT09eHp6Ijg4OF/nSE5ORlpaGiwtLbNtDwoKQqVKlVC7dm2MHDkSz58/l7Ts78NBlTHGipujR4HwcBr1+7bwcODp08zXcXHA8OFA3bpA586UGP/UKaBePbUumZSUhB9//BHPnj0rYOGBmJgYZGRkwPqt9IXW1taIzOfaq99//z3s7OyyBeaOHTtiw4YNCAwMxNy5c3H8+HF06tQJGVnn9WoZz1NljDFtmjEDmDkz+7batYGbN3M/Zvt2SmD/4AEltJ87lwKiUocOQG4ZZoOCsr9esIAeBfDw4UN8/fXXePDgAZ48eYLly5dDpsMEEnPmzIG/vz+CgoJgnCU7VL9+/VTPGzRogIYNG6J69eoICgrCRx99VChl45oqY4xpW/36VHtUPk6cyH3fU6eAzz4Dhg4FLlygVWF69KDMSTrw77//YsiAAfA8dQrNjYzw1dixBQ6oVlZW0NfXR9Rba69GRUXB5j1JKn777TfMmTMHhw8fRsOGDfPct1q1arCyssKdQhyUxUG1qHF2pkncRkZAIfcFFIrz54GxY2l4f4UKNBKxfHl6PWwYzaVLT9d1KRmTloEBZTRSPqysct/399+Bjh2Bb7+lJtsffwQaNwaWLCm04r58+RJ//fUXvL294evri/qRkeiYlobfTExQr06dAp9fLpfD1dU12yAj5aAjjzzWXp03bx5+/PFHHDx4EE2aNHnvdR4/foznz5/DthAHZXHzb1Fy9ixw+TI9V2ZKGTdOt2WSSnIy8MUXdE8A/VFp2pQC64sXwK1bNOdu9WpKGH7xImBurssSMyad27dpLqmxMc0bnT2b1izNSXBw5jJsSl5elOhBS8LDw3Hq1CncunULt2/fxp07d5CWlgYA0NfXx3BLS1QxM4Osb19AX1+Sa/r6+sLHxwdNmjSBm5sbFi5ciKSkJAx+s/aqt7c37O3tMXv2bADA3LlzMW3aNGzZsgVOTk6qvteyZcuibNmyePnyJWbOnIlevXrBxsYGd+/exXfffYcaNWrAy8tLkjLnBwfVomT1avppbw88eUKvS0JQTUujb97//UfD+Jcupeast5uQHjwAFi+m91+94qDKSgZ3d1oppnZtavqdORNo1Yqac8uVe3f/yMh31x+1tqbtEhJC4OzZs9iyZQtO5NAcXa1aNXTv3h1d69SB+RdfUDDNukB5AfXt2xfPnj3DtGnTEBkZCRcXFxw8eFA1eCk8PBx6epmNqcuXL0dqaip69+6d7TzTp0/HjBkzoK+vj8uXL2P9+vWIj4+HnZ0dOnTogB9//BFGRkaSlft9eD3VoiI5mQJOYiLwzz9At26UrzMkhGp0xdnUqcBPPwGWlkBoKNVE83L9On2LL1u2UIrHWKGKj6c8vPPnU7/p2+RyYP166ldVWraMgvFbfZCaunXrFmbOnImwLCvXuLm5oWHDhqhVqxZq1qyJypUrU9/pvHnAtm1Au3b0vATh9VRLsu3bKaB+8AHQti3Qty9tV9Zec/P8OfDVVxSEjIzoP+v48Zn5QGUy+pack8BA4JNPKJjL5TSRvGdPan6SSmIi9REBwPTp7w+oAA31zxpQW7em+8grM8q8ebRPnz6Z22bMoG0zZtA0g6FDKaG4oWHeuVIZ0yYLC6BWrdwzGtnYvBs8o6IkWWVGoVBg3bp18Pb2RlhYGExMTNC3b1/s3LkTy5Ytw5dffol27drBwcGBAmpyMrBvHx38Vg2R5YyDalGhDJ7KeWfKn/7+1BSak6dPqWlp8WIgKQno2pUGNGzYADRrBiQk5H69b74BPD1pYJCjIzXrVKtGr1u1oonlUjh2jPpMZTKadK4JZRN4bgM1FApg+XJ6PmbMu+/fvk1p2QIC6PPq1i3vgSKMadPLl8Ddu7lnNPLwoC+8WR05QtsL4NatWxgyZAiWLFmC9PR0tGnTBrt378a3334Lx9z6dw8dosDq6AjkY2AQAyBKmYSEBAFAJCQk6LoomcLChACEMDQUIjo6c3udOrR9w4acj+vZk95v00aIrPcTFydEy5b0HiDE2rXZj/vjD9peo4YQly5lf+/4cSHKlRNCLhfi1q2C39vUqXSt6tU1P0d6uhBVqtB5zp9/9/2//6b3GjbMvn369MzPYMAAIV6/1rwMrGRYtkyIBg3od7xcOSGaNRMiICDvY7ZtE6J2bSGMjIT44AMh9u9X75pffy1EUJAQ9+8LcfKkEJ6eQlhZZf5fHzhQiIkTM/c/eVIIAwMhfvtNiBs36PfY0FCIK1fUu+4bSUlJ4n//+59o2rSpcHV1Fa1atRJ///23UCgU7z/44EEhevQQYtMmja5d1GkjHnBQLQq+/57+8PfqlX37vHm0vXXrd4958EAImUwIPT36j/e2K1fo/beDakaGEHZ2tP3cuZzLo7zu119rekeZRo6kczVrlvP7jx8L4ePz7mPXrpzLNHTou+fw8qL3VqzIvl0ZVC0thYiPL+CNsBJh714Kirdu0ZfZH36ggHX1as77nzwphL4+/f5dvy7ElCnqB7i+fYWwtaUvqvb29PrOncz3W7em3/mstm0TolYtOqZ+ffUDuRBCoVCIgIAA0bFjR+Hq6ipcXV3FpEmTRHTWL+75kZEhRGqq2tcvDjioSqDIBdW0NCFsbOiP/9v/cSIj6RurTJb9P6EQQmzcSMc0aZL7uZ2d3w2q5869v+YYEkL7eHioezfvel9QvXIlszaZ9TF9evb9YmOFMDERokwZeq50+zZ9PhYWQiQlZT9GGVT79Cn4fbCSq3x5IVatyvm9Pn2E6NIl+zZ3dyG++EL75SqAmzdviiFDhqiCaffu3cWpU6d0XawiRxvxgPtUdW3/fhoqb29Pc9Gysram1GRC0CLDWSkXGM5r4E9O7927Rz/v3qV+zpwebm60jwQ5PlV9l7md64MPsofTnEZDApQgYuBA6l/OOnhr2TI6bvBgwMQk52PzMziKlT4ZGTRmISkp9/7K4GAae5CVl5e0g/kkdOnSJXz99dfY5uWFpOBgGBsZYdSoUdi2bVueSRXekZhIYxBSU7VX2BKK56nqmjJAvH5No1zfplwrcN06Wm3i7YnXeaULy+k9hYJ+2ti8G8TfJsVgnsaN6ee9e5TYuyDLMH31FS2svHw5TY5//ZoGVMlkwOjRuR9Xpozm12Qlz5UrFERfv6ZR5rt25Z5cvpDmjBbUlStXsGTJEoSGhgJCoKGxMYZbWqLhhg2oWK2a+ifct4+m/OzZUyQWMy9OikRQXbp0KX799VdERkbC2dkZixcvhpuytvSWNm3a4Pjx4+9s79y5M/bv36/tokrr6VP6NgjQ1JiTJ3PfNyICOHgwc+1Ee3v6+eBB7sfk9J6DA/2sUCH3qTZSateO/nC9fAls3pzz6Nz8qlePag1HjwIHDtBnEh8PdOoEVK8uWZFZCVe7NmXsSkgAduyg5dOOH1d71Zai4P79+1i6dCmC3iTRNzQ0RJcuXTBgwAA4adpCIwTw11/0vEMHScpZmui8+Vfd1d937tyZbVX3q1evQl9fH59++mkhl1wC69ZRE5S7e069ipmP776j/bM2e7ZqRTW00FBK8fe269eBS5fe3d60KdVAr18Hrl3Tym1lY2ZGuX4Bmi/66FHBzpd1es3SpfS8IIGalT5yOVCjBuDqSukCnZ0z51K/TYtzRjWVkZGBU6dO4YcffkDfvn0RFBQEPT09dOvWDbt378aUKVM0D6gA5ed++JC6Uzp1kqzcpYXOg6q6q79bWlpmW9X9yJEjMDExKZ5BVXmPPj557+ftTT/37cvsm3RyAj7+mJpzR46kuaBKCQm0LadkWYaGlIRBCEr0kNNqGRkZlNXp9Ons29eto0Cu7n/YGTOA5s2pNu7hQU1KOZUtOjrnLwhZde5MfxAPHqQvDdWr8398VjAKBZCSkvN7Wpozqq6MjAzcuHEDCxcuROfOnfHVV1/h8OHDUCgUaNu2Lfz9/TFt2jRYx8fTvPXbtzW/2I4d9LNjx9zHKbBc6bT5V7n6+6Qsq9Sru/r76tWr0a9fP5iamub4fkpKClKy/IdJTEwsWKGlcvw4ZVQxMgKyrAGYo/r1qW/y/HlK7PD117R9+XJKwP/PP0DVqtQnKwSdu0IFSnKwdy99M89qzBjKMPTrr1TjrV+fAlWZMtRXdPEiNasuX05JJJSU/bGGhurdq1xOk8iHD6eBIT16ABUrUk2hQgXKDXz/Pt1fRgbdS9u2OZ9LT4/KP348vR41Ku9+ZcaymjSJvoQ5OtIX0S1baP3RQ4fofW9v6lp5k8Qd48bR/6v//Y+6Xvz9gXPngD/+0Gox4+PjERoaimvXruHq1au4fv06Xr9+rXrfwsICXl5e6NatG2rXrp154P79dE+RkcDPP6t/4dhY+nsCcAYlDek0qOa1+vvNvBbwfSMkJARXr17F6jxS+c2ePRsz314guChQlvnjj/M3eMfbm4LO6tWZQdXOjnIDz5xJtb99+2gQxWef0aAmZe09pwFH8+ZRcFu2jGqrBw9S8LO1Bdq0oexMn3yS/ZjQUPqZ2wjdvJQtS2kGv/6aarz//ks14Rcv6D0HB8q41KMH/fHKK3ArB1iZmGRmnmIsP6Kj6f/S06e0YEPDhhRQ27en98PD6YubUvPmFKSmTAF++IEWDN+9m0ata0FSUhLWr1+PzZs3Z6sMAICJiQmaNWuGrl27wsPDA4Zv/x9RKIDDh+m5pquy7N5NX2wbNKBUikxtOk2oHxERAXt7e5w6dSrbcO/vvvsOx48fx5kzZ/I8/osvvkBwcDAuK5dLy0FONVUHB4eil1BfavHxlHYwIYH6gKQYyVuzJk1puX1btyNqp0yhb+EjRvDIRFYipKenY+fOnVi5ciXi4uIA0CoxLi4u+OCDD/DBBx/Ayckp26ot7wgNpeUVy5WjLwpvt1Dlx/TpVNudOTNzUGQJpo2E+jqtqRZk9fekpCT4+/tj1qxZee5nZGRUqMv+FLqQkMx5pUrPntGC33Fx0uW5ffCAmqtXrtRtQH36lAYo6ellNgEzVkwJIXDs2DEsWbIE4eHhAABHR0eMHTsWbdq0oaT2+aVswm7XTrOAClAwHTJEpwOxijudBtWsq7/3eLNOn3L19zHvGdG5fft2pKSkYICmSdpLCnd3oHJloG5d6p988gS4cIGmsDg65p6EXl1OTjkPLiosEyfSvR09SrXwL7+ke2asmBJCYPz48Tj5Zipd+fLl8cUXX6BHjx4wMFDzT3N6Ov3fADRv+lWqUqVgx5dyOp+nqu7q70qrV69Gjx49UKFCBV0Uu+iYMoVGJ166RDVTuZxGxHbtSgkSSsrn4+9P/V02NlRDnTNH1yViTGNCCJw5c0YVUAFg8+bNqFSpkmYnPHOGsiBZWmq2mszLlzRgsCDJWRiAIhBU1V39HQDCwsJw4sQJHFZ2ypdmP/5Ij5IuryQXjBUTCoUCx48fx9q1a3H9+nXV9kWLFmkeUAH6Qm1uTgOu8up3zc3OndStMmgQTcdjGtPpQCVd0EbHNGOM5UXZd+rn54d7b/Jvy+VyzLS2hlu3bjD38dEsGGaVnk4DCcuVU7dwNFPgwQNg8mSav15KlLiBSowxVtI9efIEc+fOxalTpwAApqam6Nu3Lz5v3BgWY8dSDbFJE5rGUhAGBuoHVIByIT94ABgbc1pCCXBQZYwxLUhNTcXGjRuxevVqpKamwsDAAN7e3vD29kZZExOa7y0EDSwqSEB98IAGJWpa0927l356egK5JNFh+cdBlTHGJBYSEoK5c+fi4cOHAICmTZti4sSJqKIcWbt3L9UQTUwKNjUsKQn4/HMaYLRxIw1UUkdycmbCiG7dNC8HU+GgyhhjEkhLS0NQUBB27NhBS7CBcpX7+vrCy8src85pYiLl5wUodWfFippfNCiI1jwtU0azkbuBgRRYHRyARo00LwdT4aDKGGNvJCcnw8DAAHI1kidERkZi586d2L17N2JjYwFQDvPevXtj5MiRKPd2P6efH43WrVqVUooWhDLhQ4cOmuXAVi6X2a0b59CWCAdVxhh748jvv2PB3r34fPBgjBgxItf9FAoFTp8+jR07duDEiRNQvFlsokKFCujZsyd69uz5Tk5zAJTtbOdOev7ddzS4SFPx8TQ/FaAVZTQxdy6tTdyuneblYNlwUGWMMQCIjUWdpUsx8+VLxKWn57hLQkIC9uzZg7/++gtPnjxRbW/SpAl69+6NNm3a5J0NqWJFWvLxxAla27ggAgMp+X2dOjRQSRPm5u9fJYuphYMqY4wByFiwAIr4eLySy9FQuWrNG0lJSdi0aRM2b96M5ORkAEDZsmXx8ccfo1evXuotCl6vHj0KKmvTLysyOKgyxtj583i9YwcUQmB33bpYXqMGAJoWs23bNqxduxYJCQkAgFq1aqFv377o0KEDyuR3cYmXL2mtUk1rlG+LjqYc34BmQfW//4C1a6mWykFZUhxUGWPM2BhPTEwQZGGBSh99BIVCgb///ht//PEHoqOjAQBVqlTBqFGj0K5dO/VWjwFocNKOHcCECUDfvgUvr5UVrRh19apmK8rs3QtcvkzrwnJQlVQB82KxgnJycoJMJoNMJsO4cePy3PfXX39V7av2KhY6oFy6KigoKNv2GTNmQCaTYcaMGdm2BwUFQSaToU2bNlq7dlGjLKfyUeNNDSkrbf2OrF27FjKZDPPmzQOQ+fm/L2A8ePBAtd+Dt3Iyf/nll9nuR+3goyv16uHnunWxxdoaqamp6NOnD3766SdER0ejUqVKmDp1KrZt24aPPvpI/Xu6fRvYto3SCKrTTJwXPT3AxQXQZJWu2Fjg33/peffu0pSHqXBQLUI2b96M1NTUXN9fs2aN5NdU/oFUq0+oGMstoOual5cXfHx80KtXrzz3k/J35K+//gKA915THR4eHvDx8YGPj49k59SqN6nPExMTcT0sDCl6ejh69CgePnwICwsL+Pr6Yvfu3ejevTv09fU1O//cuYBCQSNs3d0lvgENBATQAKf69WlFKyapol/dKSWaNGmCc+fOYc+ePfj000/fef/UqVO4efMmmjZtirNnz+qghNrn5uaGGzduwMTEpMDn2rBhA5KTk+EoVR+Wlk2cOPG9NXQpf0cSExNx5MgRODs7o7qEf1izBtT169dLdl6tmToVqFoV12rUgHJtERMTEwwYMAD9+/eHaUHT9h04AFy8SHl1fX0LXl4AWL8eiIgAevUCatVS71ghMtMSci1VK7imWkQMGTIEQO41jdWrV2fbryQyMTFBnTp1JAmEjo6OqFOnjiQBuqiQ8ndk3759SE1NxSeffCJdAYubEyeAgweBFStQs0wZNG3aFP3798eePXswYsSIggfUpCTg99/p+dChmvV9vi0+Hli9GvjrLwqs6rp6Fbh3DzAy4r5ULeGgWkQ0aNAATZo0weHDh7PNfwOAly9fYtu2bahcuTI6vOc/Qnp6OlatWoU2bdrA0tISRkZGqFq1KkaOHIlHjx5l23fQoEGoWrUqAODhw4e59oW9ePECK1euxCeffIKaNWvC1NQUpqamaNCgASZPnoz4+HhJPoP39anGxcVh1qxZaNKkCczNzVGmTBlUq1YNffr0wYEDB7Ltm1Ofqkwmw8yZMwEAM2fOzHavgwYNQmJiIszMzGBgYPDOZ5VV586dIZPJsGzZsgLfszqk+h0BgJ1vEhBI2fRbrLx+DbzpS0b//rByc8Py5csxYcIElJdqoe4VK4Dnz2nEb//+0pxz0yZKK1i7NtC6tfrHK2upH30ElC0rTZlYNtz8W4QMGTIE586dw7p16zB58mTV9m3btuHly5cYN27cOwu2Z/XixQt069YNQUFBKFu2LFxdXVGxYkVcuXIFfn5+2L59O44cOYJGb3J8tmzZEi9fvsRff/0FU1NT9O7dO8fzXrp0CSNGjEDFihVRu3ZtuLq6Ii4uDqGhofjll1+wbds2nD59GhUqVJD2A3mrDF26dMGTJ09gbm6Oli1boly5cggPD8e+ffsQHR2NTp065XkOHx8fXLx4EZcuXYKzszNcXFxU77Vs2RJmZmYYNGgQFi9eDD8/P/z888/vnOPu3bs4ePAgzMzM4O3tLfVtvldBf0cASsV34MAB1K5dG/Xr19d2kYumtWupplepEuXf1YaKFanZ99tvATXSHuYqLg7YupWef/GFZmkFW7YEnj4FevQoeHlYzkQpk5CQIACIhIQEXRdFCCFElSpVBADx33//ifj4eFGmTBlRo0aNbPu0aNFCyGQycffuXXH//n0BQOjr679zrs8//1wAEF27dhVRUVHZ3luwYIEAIGrWrCnS09NV25Xnq1KlSq5lfPTokTh69KjIyMjItj0pKUl4e3sLAGLUqFHvHNe6dWsBQBw7dizb9unTpwsAYvr06dm2Hzt2TAAQrVu3zrb95cuXwsHBQQAQ3t7e4sWLF9nej4+PF0eOHCnQtZVu3bolZDKZqFSpknj9+vU773/99dcCgBg7dmyOx6srt3JmJeXviBBC/PXXXwKA+OGHH7JtV37+7/uzoDw/AHH//v1c98vPuXTiwQMhmjUTwtVViMBA7V4rLk66c/3+O5V5wAAhFArpzluKaSMecPNvEWJubo5PPvkEd+7cwfHjxwEAYWFhOHnyJFq3bo1q1arleuyNGzfw559/ws7ODlu2bEGlSpWyvT9+/Hh07twZt2/ffqep9H0qV66Mjz766J0akImJCZYvXw4DAwNs375drXOqY9WqVXj06BFcXFywZs0alH2r2crc3Byenp6SXKtmzZro1KkToqOj37mnV69eYc2aNZDJZBg9erQk11NXQX5HlJSjfvPqT327KyDrQ9llUCwpR+OmpQHNmwNt22r3ehYW0pwnNpam5QCa11JZoeDm3yJmyJAh2Lx5M9asWYPWrVurBqW8b/BJQEAAhBDo1KnTu6tivNGmTRsEBATg1KlT6Nq1q9plO3XqFP777z+Eh4cjOTlZNVpSLpfj2bNniIuLk64/KouDBw8CAIYOHarZtAY1jRs3DgEBAViyZAkGZJkHuGXLFsTFxaF9+/aoXbu21suRG01/RwDKELR//344OTnB1dU11/3ymhKj7DIolu7fp9G4cjkltJc6OCUnU3PvkCFAHp+v2jZvpn7g+vWBFi3UP/7xY1o3tWtXavJmWsNBtYhp27Ytqlatih07dmDhwoXYsGEDzMzMcu3vVLp37x4AGgGqHAWam2fPnqlVpujoaPTq1QsnTpzIc7/ExEStBFXlQs916tSR/Nw5ad++PerWrYszZ84gNDRUFXyWLl0KABgzZkyhlCM3mv6OAMDRo0eRkJCAoUOH5rnfunXrcn3vwYMHxTeoVqtGNb7r14HKlaU//x9/0MoxERGUQUmqL4E+PrSiTePGmn0R2LOH+pEvXcockcy0goNqEaMciTp9+nT4+PggMjISI0aMeG+OUeXSUy4uLnB2ds5zX3c1J6APGzYMJ06cgIeHB2bOnAlnZ2eUL18ehoaGAAA7Ozs8ffpUVXMt7mQyGcaOHYtRo0ZhyZIlWLt2LYKDg3HhwgU4OTlpVMuXunya/I4A2kn4UOxUrqydgHrvHvDnn/T8m2+kC6gAYGYGjByp2bEZGcC+ffSc56ZqHfepFkGDBg2Cnp4e/v77bwD5a9ZzcHAAALRo0QLr1q3L8zFs2LB8lyUpKQkBAQHQ09NDQEAA2rdvj0qVKqkCalJSEiIjIzW4y/xTzlu9efOmVq+Tlbe3NywsLODv74/nz59jyZIlAICRI0e+d3RtYdDkdyQjIwN79uyBra0tPDw8tF3EouXOHcp1qy1C0BSdjAzgww81a6LNSVqaKuuTxoKDaR1XCwugVasCF2np0qVwcnKCsbEx3N3dERISkuf+27dvR506dWBsbIwGDRogICAg2/tCCEybNg22trYoU6YMPD09cfv27QKXU1d0/9eBvcPR0RHdu3dHhQoV0KxZs3zVLJXTSfbu3YvXr1/n+1ryN0P90/NYPzIjIwNmZmawyGHQxaZNm7ReQ+34ZgHmNWvWICMjo0Dnet/9KpmammLo0KF4/fo1fvnlF+zYsQPGxsbvbTYtLJr8jhw/fhzPnz9Hz549i09OXikoFMBPP1E/5+7d2rnGkSPAuXPUV/vNN9Kdd9EiYNgwStqgKeXc1M6dgTdfhjW1detW+Pr6Yvr06Th//jycnZ3h5eWlWnTgbadOncJnn32GoUOH4sKFC+jRowd69OiBq1nuZ968eVi0aBH8/Pxw5swZmJqawsvLS62/Y0UJB9UiaufOnYiJiUFwcHC+9m/UqBF69eqFR48e4ZNPPnkn0TlAtcrNmzcjKipKta1ixYqQy+WIjIxEbGzsO8dYW1ujfPnyiI+Px8aNG7O9d/r0aUyaNEm9G9PAsGHDULlyZVy4cAHDhw9HUlJStvcTExNx9OjRfJ2r8ptmv2vXrr133zFjxkBPTw/z589HamoqPvvss1zn4uaVZF5b1P0dKbVNv7t3U1AyMZGuBplVcjKwcCE9HzQIsLOT5rzPnlHmpEuXKDuTJmJjgTejxKVo+p0/fz6GDx+OwYMHo169evDz84OJiUmuWb5+//13dOzYEd9++y3q1q2LH3/8EY0bN1a1/AghsHDhQkyZMgXdu3dHw4YNsWHDBkRERGC3tr4AaRkH1RJk7dq1+Oijj1QT+93c3NC3b1/06dMHbm5usLS0xIABAxAXF6c6xtDQEN26dUNGRgZcXFzw+eefY9iwYaomYn19fUybNg0ANYk2a9YMn3/+OVq2bInmzZuja9euqFKlilbvq2zZsti7dy9sbGywdu1aVK5cGV27dkW/fv3QokUL2NjY4KeffsrXuby8vGBqaordu3ejZcuWGDx4MIYNG4a1a9e+s6+TkxO6deumep3XACVlnzYAVdN4USKEwK5du2BlZYXWmmTiKa7i4oA3f8AxciQlZJBaQACtb2pvTwOKpLJ2LZCaSqvRuLlpdo4DB6hJul69AifPT01NRWhoaLbpa3p6evD09Mz1i11wcPA70928vLxU+9+/fx+RkZHZ9jE3N4e7u3u+vywWNTxQqQQpV64cDh8+jK1bt2LTpk0IDQ3FxYsXYWZmBltbW/Tv3x/dunV7J4H6ihUrUKFCBRw4cAA7duxAWloaAJofCtAc16pVq2LevHm4fv06rl27hjp16mDp0qX48ssvC2XeYqNGjXDlyhX8/vvv2LNnD4KCgqBQKGBra4tu3bph8ODB+TqPtbU1Dhw4gFmzZiE0NBTBwcFQKBRIT0/P8RxeXl7YvXs3PDw80Lhx41zPGxoaqtrf3t5es5vUolOnTuHp06cYMmRIoUxLKjIWLwYSEynxfJ8+2rlGr140kMjcnHLqSiE6Gti1i55rOC81PDwcjw8fhlV4OMoPH46Cfp2IiYlBRkYGrK2ts223trbOdbxDZGRkjvsrx2Eof+a1T7EjWRqJYqKoZVRiRVuLFi0EALFly5Y89xs2bJiQyWTiwoULap0/PxmVpODr6ysAiP3792v1OllB1xmVLlygDESurkJcvqy7cmhizhwq9/DhamVPev36tdi4caPo27evcHV1Fa6urqKFi4vY8McfBS7SkydPBABx6tSpbNu//fZb4ebmluMxhoaG7/zfWbp0qahUqZIQQoiTJ08KACIiIiLbPp9++qno06dPgcv8PtqIB1xTZSwXBw4cwMmTJ+Ho6PjeOaBHjhzB559/ni2fsDrmzJmDdevWwdraGnPnztXoHHmpU6cOZsyYIVnmqdysX78ex44d0+o18iU9HZg9m5737Ak0aCD9NW7fppVnckm2orHIyMwBVfmspSoUCuzbtw9+fn6qQUP6+vpo2rQp2rVr995lBfPDysoK+vr62cZkAEBUVBRsclmBx8bGJs/9lT+joqJga2ubbR9N/y/pGgdVxrJ4/vw5vv/+e8TFxamG/s+bN++9/aQFHZx06NAhAED16tW1ElSHaytp/FuCg4OLxjqqenq0MsyGDYA2knWkptIo31evaJBSvXrSnXv3bppK4+r63qxMQgj8+++/WLZsGe7evQuAAtVXHTuief36KCthGka5XA5XV1cEBgaix5uE/AqFAoGBgbmON/Dw8EBgYCDGjx+v2nbkyBHVlK6qVavCxsYGgYGBqiCamJiIM2fOYKSm83J1TbI6bzHBzb8sL8pk8QYGBqJWrVpixYoVui4SK4i3FoGQzOrV1DzbsaMQSUnSnjsjQ4iAACGuXMl1F4VCIU6dOiUGDhyoauZt27at2LBhg0h59UoIHx8q39atkhbN399fGBkZiXXr1onr16+LESNGCAsLCxEZGSmEEGLgwIFi4sSJqv1PnjwpDAwMxG+//SZu3Lghpk+fLgwNDcWVLPc2Z84cYWFhIfbs2SMuX74sunfvLqpWrSpevXoladlzoo14oPOgumTJElGlShVhZGQk3NzcxJkzZ/LcPy4uTowaNUrY2NgIuVwuatasqVY/EQdVxkq4HFYXklRkpBAtWlDQOnBAu9fKQWhoqBg2bJgqmLZs2VIsXbo082/anj1UtlathHj2TPLrL168WDg6Ogq5XC7c3NzE6dOnVe+1bt1a+Pj4ZNt/27ZtolatWkIul4v69eu/8/daoVCIqVOnCmtra2FkZCQ++ugjERYWJnm5c6KNeCATQne55bZu3Qpvb2/4+fnB3d0dCxcuxPbt2xEWFvbOKisADelu0aIFKlWqhB9++AH29vZ4+PAhLCws3puaTykxMRHm5uZISEiAmZmZ1LfEGNOlkyeBn3+mptl27bRzjR9+oOT0jRpRrl+pEmkkJtL6qzmsvRobG4vDhw8jICAA169fB0DNsb1798agQYNgaWlJO754AXzyCU0lGj8eyLIgBHuXNuKBTvtUs04kBgA/Pz/s378fa9aswcSJE9/Zf82aNYiNjcWpU6dUfVxOTk6FWWTGWFGVkkKpAqOjKSWhNoJqaCgFVD09Wo1GysxUCxcCp08DkyYBrVpBoVDgv//+w19//YXTp0+r5kLr6+ujR48eGDp06LuVjxUrKKBWrQr06ydd2Vi+6SyoKicSZ83I876JxHv37oWHhwdGjx6NPXv2oGLFivj888/x/fff5zr3LiUlBSkpKarXiYmJ0t4IY6xoWLsWePKEljYbMUL682dkAL/+Ss979aK5r1J5/JiS3isUSJTJsHPdOuzYsSPbXM369eujc+fOaN++fWbNNKvbtzPXXP32W1rVhhU6nX3qmkwkvnfvHv755x/0798fAQEBuHPnDkaNGoW0tDRMnz49x2Nmz56NmTNnSl5+xlgREh4OKEcdf/MNpSSUWkoKULcuEBOj+YoxuUhcsADpMTG4VLYsJn3zjSo3tbm5Obp3744ePXqoFpbIkRAU8BUK4KOPNM/AxAqsWH2VUSgUqFSpEv744w/o6+vD1dUVT548wa+//pprUJ00aRJ8fX1VrxMTE1UrujDGSgAhgDlzaBpK8+aAhNNIsjExAaZPp77PAva/paWl4eLFizh58iTCjhzBmKAgyAAsL1MG6enpqFu3Lvr06YMOHTrAKL9Zmvr2BZ4/ByZMKFDZWMHoLKhqMpHY1tYWhoaG2Zp669ati8jISKSmpqpWIMnKyMgo/7+UjLHi57//gJAQGuDz3XfS9nPmpAABNSIiAn5+fggKCkJycjIA4IuICOgBiKhWDd0nTkSrVq3yrpXmRCajGmrbttTfy3RGZ59+1onESsqJxLmt9diiRQvcuXMnW/LyW7duwdbWNseAyhgrBd7kXcZnn2ln8fHr16lJ+ckTjU/x4sULLFq0CL169UJAQACSk5NhaWkJn2bN0KdcOdSqXRsfbd2K/v37qx9Q3+TqBsABtQjQ6b+Ar68vVq5cifXr1+PGjRsYOXIkkpKSVKOBvb29sw1kGjlyJGJjYzFu3DjcunUL+/fvxy+//ILRo0fr6hYYY7o2YQKwerW0K8QoKRTUVxkUBLxZYEIdERERWLNmDXr06IENGzYgLS0Nbm5uWLNmDQ4ePIixrq4wL1cO+p06aZaV6cED4OOPKQuT7mZHsix02qfat29fPHv2DNOmTUNkZCRcXFxw8OBB1eCl8PBw6GX55uXg4IBDhw5hwoQJaNiwIezt7TFu3Dh8//33uroFxlhRkM956moLCACuXKH+1Hx8eVcoFLh79y7Onj2Lo0eP4vLly6r3qlativHjx6N58+aZi8QPHkypCN8asJkvysFJMTG0Zuqb1IFMt3Sa/EEXOPkDYyVESAjg5ERTaLTh5UtKpBAbC3z1FeDtneNuym6ro0ePIjQ0FPHx8ar3ZDIZXF1d0aVLF3Tu3FnaZfeOHaOpM4aGwPbt2mn6LuFKXPIHxhjTSHIyZTZKTqZmWSkT2iutXEkB1dGR+mvfkp6ejoCAAKxbtw7h4eGq7cbGxmjUqBE8PDzQvn17VMxpYfTjx2mea5aVWdTy+jUwfz499/bmgFqEcFBljBU/mzYB8fEU8GrXlv789+8D/v70/JtvqDb4RmxsLI4cOYKNGzeqkjOYmZmhd+/eaNGiBerVq5f3qkYxMcCUKZRMYv16oGZN9cu3fj3w9CktPfdmDAorGjioMsaKl9hYCqoA9XNK2aSqtH49Bb0PPwSaN0dUVBSOHTuGf/75BxcvXlTNQLC0tMSAAQPQu3dvmOQ34cSyZbRk3AcfANWrq1+2J08yE134+lK+YFZkcFBljBUva9ZQs2/dupLn942IiMDu3btxNyYGLSpWRLi+Pi74+ODatWvZ9qtXrx66du2K7t27qzcP/sYN4O+/6fnXX2s2BSY4mKbRuLlpL9EF0xgHVcZY8RERAezYQc/HjpUk0YNCocCZM2ewdetWnDx5Esqxm8cBGgwEGnDk7OyMdu3aoW3btrDVpC9UCOC33+hnp05AgwaaFbh3b/pCUa6c9hNdMLVxUGWMFR8rVgDp6VRLK2B+2+TkZOzbtw9bt27Fw4cPAQBOr17Btk0btG7bFunp6UhOToaFhQVat26NChUqFKzsR48Cly5Rc+3YsQU7V/36BTueaQ0HVcZY8SAEYGUFGBkBY8ZodIrU1FScPXsWQUFBOHTokCpVoKmpKXp36IDhe/fCOC6OUv6VLy9d2VNSgN9/p+c+PppNAwoMpBHDnLu8SOOgyhgrHmQyquH5+KiVfzcxMREnTpxAUFAQgoOD8erVK9V7VapUQd++fdG1a1eYbNxIg5OEAMzNpS27EECXLsCRI8DAgeofHxVFyfwzMoANGzQbMcwKBQdVxljxks+AevHiRfzxxx84d+5ctnzhlSpVwocffoh27dqhSZMmlLXtxQvgzz9ph2HDpM+ha2xMy8UNH67ZOqcLFtDc1EaNgBo1pC0bkxQHVcZY0SYEBZX27fM1uOfZs2dYtGgRDhw4oNpWo0YNtG7dGq1bt0bdunUz0wQq+ftTBqVq1aQfUStE5oAiTQJqSAj1x+rpUQYlHpxUpHFQZYwVbSdPAlu20KjfAwdybZpNS0vDn3/+iVWrViE5ORkymQw9e/aEj48P7O3tcz9/UhKdH5C+lnrtGjBvHs0n1SQ/cXo65fcFaNRvrVrSlY1pBQdVxljRpVAAS5bQ8379cg2owcHB+O2331SjeBs0aIDvvvsOdevWff81tm6l5l8nJ8DTU6KCg2qo//sfBda//tIsqO7YQdmdLCyAL7+UrmxMazioMsaKroMHgTt3gLJlgUGD3nn70aNH+P333xEUFASAMhyNHTsWXbp0ybbCVZ4uXqSfQ4dKW0s9fBi4fJn6UzUZrZyQAPzxBz0fNapAi6OzwsNBlTFWNKWlAX5+9PytEb93797FmjVrcOTIESgUCujp6aFfv34YMWIEypYtq951fv8dOHuWlmCTyuvXmVNoBg/WbAqNsTHQvz81f/OybsUGB1XGWNG0cydlULKyUq0Sc+3aNaxZswbHjx9X7daiRQuMGzcO1apV0+w6MlmBE0m8Y+NGIDqaVqEZMECzcxgZUe158GDpRyMzreGgyhgrepRLugEQw4bh/LVrWL16NUJCQgBQ2sB27dphyJAhqK3pKjVXrgBVq1LTspSiozMT3n/1FQVHdQhBD2Ug5YBarHBQZYwVPUZGEKNHI2rtWkzZtw8Xr14FAOjp6aFz584YNGgQnJycND//69eU0D4tjVIfSjmqdudOOr+Li2YDn06epJVsvvkGaNxYunKxQsFBlTFWpCgUCvxz7BjWbNuGW0+eAE+eQC6Xo3v37hg4cCDs7OwKfpGdO2kJOTs7mpsqpREjKJVg9erqzylNS6PFx8PDgRMnOKgWQxxUGWNFyuhRo3D23DkAQJkyZdC7d2/0798fVlZW0lwgJSWzeXbwYM0SMuRFT49SEmpi+3YKqJaW1J/Kih0OqoyxoiMqCpNCQ+GXmgqn0aPRt18/mEudh3fPHuD5c8DaGujaVbrzhofTKF9NFw2Pi8ucQjN6NGBqKl3ZWKHhoMoYKzrWrkVlhQIzmzaF4YgR0qfkS00F1q2j54MHA4aG0pxXoaAUggkJlAFJk7VS/fwoVWKtWsDHH0tTLlboeFgZY6xoiIoCdu+GnkwGw9GjtZPjdu9eGp1bqRLQrZt05w0IAO7epablKlXUP/72bWDXLnr+zTc84rcY4385xljRsHYt5bpt0kR7A3QiIihgDRoEyOXSnDM1NTNJxeDBmmU++vtvqu1+9BEPTirmuPmXMaZ7b2qpAGj0rLZ89RVlJ7K2lu6c27cDkZFU++3bV7NzTJgAfPABPVixxkGVMaZ7ylqqq6v2a2qOjtKd6+VLYPVqev7ll+onelCSyYAOHaQrF9MZbv5ljOlWbKz2a6kXLgBvVrCR1IYNQGIizXXVZBrN+fO09BwrMTioMsZ0y9ISWL4cGDhQ2qT2SgoF8OOPtB5plpzBkoiKop+jRwP6+uodGxtLzb49e9J0HFYicPMvY0z3GjWihzYcPUpBy8wMaNpU2nPPnEkJ82vUUP/Y5cupluroCFSuLG25mM5wTZUxpjspKdo9v0KR2ef5+eeAiYn016hZU/3pP7duZTZ5f/01T6EpQfhfkjGmG1FRQKdOwKJFNEhJG44fp/mjpqaaj8zNiXLEryaEAP73P/rZoQMl3mclRpEIqkuXLoWTkxOMjY3h7u6uWt4pJ+vWrYNMJsv2MNY0LRhjTHfWraNBPteuSZ9/F6Cgpayl9u0LlCsnzXmvXQPmzqU+2vh49Y8/dgwIDaV5smPHSlMmVmToPKhu3boVvr6+mD59Os6fPw9nZ2d4eXkhOjo612PMzMzw9OlT1eOhNkb1Mca0Jzpa+yN+T50Cbt4EypShpl8pCEE1awBo3x6wsFDv+NRUYOFCej5wIC1izkoUnQfV+fPnY/jw4Rg8eDDq1asHPz8/mJiYYM2aNbkeI5PJYGNjo3pYSzmRmzGmfevW0TJnjRtrZ8QvQHl4zcyoRqlu8MtNcHBmLfOLL9Q//vVrGpBVqRLg4yNNmViRotPRv6mpqQgNDcWkSZNU2/T09ODp6Yng4OBcj3v58iWqVKkChUKBxo0b45dffkH9+vVz3DclJQUpWQZDJCYmSncDjDH1RUdn5rnVJDDlV+fOQJs2QEaGNOdTKIAlS+h5nz6AjY365zAzoxHDL19qZ9AU0zmd1lRjYmKQkZHxTk3T2toakbkMAqhduzbWrFmDPXv2YNOmTVAoFGjevDkeP36c4/6zZ8+Gubm56uHg4CD5fTDG1FAYtVQlExPp+lIPHaJRu2XLUo5fdQhBD6WyZaUpEytydN78qy4PDw94e3vDxcUFrVu3xs6dO1GxYkWsWLEix/0nTZqEhIQE1ePRo0eFXGLGmEpyMrB/Pz3XVl9qWBjw33/Zg1hBpabSvFKAmm3VXeP1yBHA1zczWUQBCCEwbdo02NraokyZMvD09MTt27fzPGb58uVo2LAhzMzMYGZmBg8PDxw4cCDbPq9fv8bo0aNRoUIFlC1bFr169UKUBOUtbXQaVK2srKCvr//OP1xUVBRs8tm0YmhoiEaNGuHOnTs5vm9kZKT6RVI+GGM6YmICbNsGjB+vvVrq0qWUqWjlSunOqVAAHTsCDg7AZ5+pd2xiIvDbbxTo//67wEWZN28eFi1aBD8/P5w5cwampqbw8vLC69evcz2mcuXKmDNnDkJDQ3Hu3Dm0a9cO3bt3x7Vr11T7TJgwAX///Te2b9+O48ePIyIiAp988kmBy1vqCB1zc3MTY8aMUb3OyMgQ9vb2Yvbs2fk6Pj09XdSuXVtMmDAhX/snJCQIACIhIUGj8jLGirBr14RwdRWiaVMhHj+W/vzp6eofM3Mmlal3byFSUgp0eYVCIWxsbMSvv/6q2hYfHy+MjIzEn3/+qda5ypcvL1atWqU6h6Ghodi+fbvq/Rs3bggAIjg4uEBlLsq0EQ903vzr6+uLlStXYv369bhx4wZGjhyJpKQkDH7TZ+Ht7Z1tINOsWbNw+PBh3Lt3D+fPn8eAAQPw8OFDDBs2TFe3wBjLj8IYJKicl9qpE2BvL/351c3ve+4cLYwOAFOmFHgN1/v37yMyMhKenp6qbebm5nB3d89zcGdWGRkZ8Pf3R1JSEjw8PAAAoaGhSEtLy3beOnXqwNHRMd/nZUTnuX/79u2LZ8+eYdq0aYiMjISLiwsOHjyoGrwUHh4OvSwpvOLi4jB8+HBERkaifPnycHV1xalTp1CvXj1d3QJj7H2SkmgdU2dnYMYM9fsk8+P2bcqgJJOpP5AoN7GxwNSpwNCh+VqSLj09HYcOHcLVq1cRFR6Ofrt3w06hQOVx4+jeC0g5gFOdwZ1KV65cgYeHB16/fo2yZcti165dqr+bkZGRkMvlsHhr6lF+zsuy03lQBYAxY8ZgzJgxOb4XFBSU7fWCBQuwYMGCQigVY0wyO3dSTTU8XLrRuG9Tzm339AScnKQ559q1wJkzwIsXwPr1ueb4TUlJwaFDh7Bq1SpEREQAAD6NjkbZ+Hg8MzND5Vz+vr3P5s2b8UWWaUf7lYO8NFC7dm1cvHgRCQkJ2LFjB3x8fHD8+HGukEisSARVxlgJlpoKbN5Mz318tJM8/sEDWo0GAIYMkeacT58CO3bQ89Gj3wmoQgicPXsW+/fvx7Fjx5CcnAwAsLS0RLdOndBz2zZYmJri1Y8/ajyFplu3bnB3d1e9Vs65j4qKgm2WbExRUVFweU8OYblcjhpvVtNxdXXF2bNn8fvvv2PFihWwsbFBamoq4uPjs9VW1Rk0yggHVcaYdu3fD8TEUBahTp20c40XL4Dq1akftWZNac65ciXNp23SBHBzU21OTEzEiRMnsGnTJty6dUu13cbGBn369EGfPn0oH/moUUBgIEw7d9a4COXKlUO5LDV7IQRsbGwQGBioCqKJiYk4c+YMRo4cqda5FQqFKki7urrC0NAQgYGB6NWrFwAgLCwM4eHhqn5Xlj8cVBlj2qNQABs20PMBAwBDQ+1cp0EDYMsW6ruVwoMHwL59AIBXQ4bgn4AAHDt2DDdv3szWx1imTBl06dIFnTp1QoMGDbKN/4CREWV1kpBMJsP48ePx008/oWbNmqhatSqmTp0KOzs79OjRQ7XfRx99hJ49e6q61SZNmoROnTrB0dERL168wJYtWxAUFIRDhw4BoMFOQ4cOha+vLywtLWFmZoaxY8fCw8MDzZo1k/QeSjoOqowx7fnnH+DRI0rPl+WPvlbo6UnWX5uxdCmSExNxxcIC3/n6vjMH1NHRER9//DF69eqVfe7706fAv/8Cn36qtTVSv/vuOyQlJWHEiBGIj49Hy5YtcfDgwWyrdd29excxMTGq19HR0fD29sbTp09hbm6Ohg0b4tChQ2jfvr1qnwULFkBPTw+9evVCSkoKvLy8sGzZMq3cQ0kmE0LKtCNFX2JiIszNzZGQkMCJIBjTtrFjKQn98OHayfN75w5w8iTl4i1TpsCnu3//Pg4vWYI2f/yBdIUCk6tWxWNjYzg4OKBz585wdXVFrVq1UDanPlIhgHHjaHWcPn2A774rcHmYdmkjHnBNlTGmPb/9RlmEssx/lNTy5TSN5tEjmgeqAYVCgdOnT8Pf3x+nTp2CTAhct7FBLQMDtPDxgZeXFxo0aABZLiN/VQ4fpoBqaEhBlZVKHFQZY9pjZERLr2nD1asUUPX0qL82D8+ePUNISAguXLgACwsLNG7cGDY2Njh8+DD+/vtvVapUmUyG1m3aoE+fPmjSpEn2PtK8JCTQFwiA5rRKNaWHFTscVBlj0ktMpGkkWupXBAAo+/u6dMkWxIQQePz4MS5duoRLly7h4sWLuH//frZD161bl+21mZkZunbpgr6ffAL7qlXVL8uCBUBcHFCtGq+TWspxUGWMSe/HH4F796hJtlEj6c8fGgqEhAAGBkj18cHNy5dx6dIlXH7zMzY2NtvuMpkMdevWRZMmTRAfH4/Q0FBERETAzc0N3bt3R5s2bSAPCaH5qCNHAh9/nP+yhITQSGGZjO5XWyOcWbHAQZUxJq3794Fjx+j5W2nvJCEE0hYuRHJCAk7Y2uKX/v1V8y2VDA0NUbduXTg7O8PZ2RmNGjWC+VupERUKRWbzrkJBNd/oaCp/fikUwNy59PzTT4GGDQtyZ6wE4KDKGJPWxo30s3VrQJOm1BxkZGQgLCwMoaGheLZ7NzodPIhUmQwLTEyQYmiI8uXLw9nZGQ0bNoSzszPq1q0L+XuS12frLz1yhBYgNzVVr/lWTw+YPRv44w9Aw1SErGThoMoYk06WpAkF7VuMjY3FqVOncPLkSZw+fRovXrwAAFinpqJCuXJQ2Nqi9xdfoF27dqhZs+b7R+fmJj0d8POj597e6if7r1Urc5ASK/U4qDLGpLNwITWJfvih2k2hr169QlhYGM6cOYOTJ0/i+vXr2d4vW7YsGjduDFdXV7Rs2RJVHBykGQi1dy9NySlfPv8LkGdkAA8f0sAkxrLgoMoYk8aZM8CJE7Tm6PjxAKjf8ubNmzh58iSCg4MRHx8PJycnVK1aFU5OToiLi0NYWBhu3ryJ8PBwvJ2Lpm7dumjRogWaN2+ODz74IP9TXPIrJYVy/AKUiN/EJH/H/fknsHgx8OWX0i0zx0oEDqqMMWkcPw4AePXxxzh+/TpOrVqF4OBgxMXFZdstPDwc//77b46nsLKygrOzM1q2bInmzZujQoUKmW8eOEAjbYcPB+zspCnzyZPAs2eAjQ3wJpH8e0VEUHNxRgZgaSlNOViJke+gevny5fefzMAANjY2sORfNMZKlYSEBGyzsEB0pUo4snMnXu7erXrPxMQEzZo1Q/PmzWFnZ4cHDx7g/v37ePDgAczMzFC7dm3UqVMHtWvXzh5Es0pLo+xJERE0+MnbW5qCt2sHrFtHq9y8Z2ATAEpF+MsvwOvXgKsr0K2bNOVgJUa+g6qLiwtkMtk7zTNvk8lkcHZ2xoYNG/DBBx8UuICMsaJPJpNh5apVUCgUgJ4eatSogebNm6NFixZo2LAhDLPM3XTLsoxavu3ZQwG1QgXpUwCq83fqwAHg9GkKwJMn57poOSu98h1U385IkhOFQoGoqCj8+uuvGDlyJP77778CFY4xVgz8+y/MGjaEj48P7O3t0bx5c1SqVEm686ekAKtX0/OhQ4Esq7FoLDGRapvqlDMpiQZiAcCwYYCjY8HLwUqcfAfVKlWq5Gu/qlWrYu7cuXB2dta4UIyxYiIiApg4EZDLMXrLFun6OrPavj2z31Oq5eNWrQJ27KABVfmt+a5eDcTGUjAdOFCacrASRyuJOatWrYpTp05p49SMsaJkyRIgNRWoUwewtZX+/ElJwNq19HzEiPz1e75PVBQF1NRUwMEh/8dZWdHoYF9fTkXIcqWV0b/6+vpcU2WspLt8mZY7k8ko0Gijf3HrVloBpkoVSpwvhZUrKaA2bgw0a5b/4z7/HOjaVbKF0FnJxFNqGGPqE4JWZgEo+XytWtq5zqefUp9qnTo0/7WgwsMp2QNAaQXV/SIg0ULWrOTS4rpMjLES68gR4MoVoEwZYNQo7V2nXDlaNaZtW2nO5+dHGZ9atcpfxqeMDOozDg6W5vqsxCtQUJ0zZw7i4+MlKgpjrFhISQEWLaLngwZRX6PUUlOpNiylW7eouRrI/xeBXbuAo0dp+kxysrTlYSVSgYLqL7/88s66hYyxEi49nWp6dnZA//7aucbChTR95to16c55+zZgZAR4eQE1a75//8RESjgBUDrC/KYwZKVagfpU35cIgjFWApmaAt9/TzVWIyPpz//0KbBzJwVvKWuHXboAbm75rwGvWkWDpKpVy38KQ1bq8UAlxphmtBFQARqdm54ONG1KDylVrJi//R48oJHHAI1slmKQFCsVCtT8e/369XwnhWCMFXO3bwNffQXcvau9azx8mLkeq1QDoC5fBi5dUu+YBQtokFKrVupNu2GlXoGCqoODA/T5GxxjJZ9yCs2pU9Qsqi0rVmSux9qgQcHPp1AAc+dS/+yuXfk75vJlWr3GwACYMKHgZWClCjf/Msbe78QJWnbN0JDmd2pD1tG5X34pzTkDA4GwMBpklN9pOQ0aAL/+Cjx+zPl9mdqKxDzVpUuXwsnJCcbGxnB3d0dISEi+jvP394dMJkMPqfKBMsbelZ6emUj+s88Ae3vtXEe5XFyHDtIkk8jIyBy9O2AAYGGRv+NkMgrAnN+XaUDnNdWtW7fC19cXfn5+cHd3x8KFC+Hl5YWwsLA8V7p48OABvvnmG7Rq1aoQS8tYKbRzJ/V1li8PDBmivet88w0twybVkpH79lEGJXPz/E39SUykn5w1iRWAzmuq8+fPx/DhwzF48GDUq1cPfn5+MDExwZo1a3I9JiMjA/3798fMmTNRrVq1QiwtY6VMRASwdCk9//JLoGxZ7V1LTw/o3FmaJtfUVOCPP+j5kCE0Deh9li8HevakJmPGNJSvmqqvry9+/PFHmJqawtfXN89958+fn++Lp6amIjQ0FJMmTVJt09PTg6enJ4LzSAs2a9YsVKpUCUOHDn3vmq0pKSlISUlRvU5UfhtljL3f5s20UkzDhtItu/a26GhqmpViBRqlHTtoNZpKlYDevd+//927wF9/0cCm/DYTM5aDfAXVCxcuIC0tTfU8NzI1k1PHxMQgIyMD1tbW2bZbW1vj5s2bOR5z4sQJrF69GhcvXszXNWbPno2ZM2eqVS7G2Bu+vkCFCkDHjtqbqzlrFgW1mTMpOYMUKlak9VeHDHn/fFohgP/9jwJqu3aAq6s0ZWClUr6C6rFjx3J8XthevHiBgQMHYuXKlbDKZ77RSZMmZatdJyYmwkGdNRQZK8309bXbj3r5MnD6NF2ncmXpztu+PdC6df6+CPz7b+bI5nHjpCsDK5V0OlDJysoK+vr6iIqKyrY9KioKNjY27+x/9+5dPHjwAB9//LFqm0KhAAAYGBggLCwM1atXz3aMkZERjLSV+YWxkujlS+DPPwEfH2mbZHOi7Pf8+GPKJSyl/JQ9NTVzCbv+/bU3spmVGjodqCSXy+Hq6orALAMDFAoFAgMD4eHh8c7+derUwZUrV3Dx4kXVo1u3bmjbti0uXrzINVDGpDBnDiVh+OEH7V4nay1Vqtrw5s3Anj00nSY//P1pPmqFCtqtkbNSQ+dTanx9feHj44MmTZrAzc0NCxcuRFJSEgYPHgwA8Pb2hr29PWbPng1jY2N88NZwe4s3gwre3s4Y00BAAHDwII3E9fbW7rVWrqSfXbtKU0uNiQGWLaNE/9bW+Usv+Pw5zUsdPZpXoWGS0HlQ7du3L549e4Zp06YhMjISLi4uOHjwoGrwUnh4OPT0dD7zh7GS78kTqqUCwIgR+VvEW1OXL9PC31LWUlevpoDasCHg7p6/YyZMALp1A6pWlaYMrNSTiVK2fltiYiLMzc2RkJAAM57kzRhJTweGDweuXAFcXKivU5tfZletAvz8gO7dgalTC36+J0+ATz6hZt8//gAaNy74OVmJp414oPOaKmOsCFi1igJq2bLAjz9qN6ACwLBhQIsWlKVJCitWUEBt1uz9AVUISvTQtSvn9mWS43ZVxkq7Fy+Abdvo+Q8/ALa2hXPdunVpLmlB3b0LHDhAz0ePfv/+J08Ca9ZQbl8pF0FnDFxTZYyVKwds2gQcPUrJ7LUpPBwwNqZMR1JZtoxqn+3aUaDOi0KRmXaxVy8enMQkxzVVxhiNvtX2aF8A+O036kdV1iyl4OMDNG2av+XiDh+mxdbLlgUGDZKuDIy9wTVVxkqrI0couOQwJ1wrrlyhRc719KRZgFypYcPMJd7ykp5Og6MA+gLBAxWZFnBNlbHS6NEjGpA0dixw5kzhXDPrvFQpUhKqO3Fhzx5K9GBpCfTrV/DrM5YDDqqMlTbp6cDkyTRIp3FjajrVtqtXM2upUsxLFQIYORJYtChzHdS8vH6dGdSHDeO+VKY1HFQZK23++AO4fp0GKM2apf3pM8prAtLVUv/7Dzh3jkYtp6e/f3+ZjGqntWvTmqmMaQn3qTJWmpw/D6xdS88nT5ZmSsv7aKOWumIFPf/sM2rOfR8jIxqY5ONDAZYxLeGgylhpkZgITJlCQalbN8DTs3Cue/8+TaPp0EGaWuqpU0BYGFCmDDBggHrHckBlWsZBlbHS4tAhIDqasgh9803hXffjjyl70ptlGgtECMrxCwC9ewPm5nnv//w58O23wNChQPPmHFSZ1nFQZay0+PRTmkbi4FD4A3Xy00SbH+fPUzJ+uZzWP32f1atp/1WrKKgypmUcVBkrTby8Cu9ad+7QgucuLtKdc/16+tm9O2Bllfe+T54Af/1Fz8eM4VoqKxQ8+pexkiwtjaadxMUV/rUXL6bpKxs2SHfOyZOBvn3zl/1JmWTfwwNwdZWuDIzlgYMqYyXZihUU1L74Qpo+zfy6do0S1+vpAW3bSndea2vqI31f0v87d9RLss+YRDioMlZSnTuX2Vz65ZeFMx9VSTmYqEsX6sMtqIwM9fZXJtn39ATq1Cn49RnLJw6qjJVEL18C06ZRYOnRg1ZwKSz37gH//kt9mFIlrZ82DfD1pek573PzJl1fT4+yLjFWiHigEmMl0aJFNH3GwQH4+uvCvfamTfSzTRugSpWCny88nFaXESJ/K9HUrg38+isFYCmuz5gaOKgyVtKEhgI7d9LzqVMpSUJhiY4GAgLouVRLya1bRwG1VSugVq337y+TUT+ulH25jOUTB1XGShplnt1evShhfmF6+pQWILe2lmZ5t6dPgf376fn7UhwqFJQ4n5PlMx3iPlXGSpr58ynH7VdfFf61nZ2BXbuAX36R5nwbN9IgpaZN3x+kjx6l7E3KWjpjOsA1VcZKGlNTWidVV/T1gYoVC36e58+B3bvp+ftqqenptFB5QgIdx5iOcE2VsZIgLQ04ckT9hbulkppKfalpadKdc8cOOm+DBkCTJnnvu3cvLbxevnz+0hcypiVcU2WsJNiwgWpqx45J1/SqjoMHaW3WbdtoYJEUBg2inMFOTnmnGHz1KnMB8iFDuE+V6RQHVcaKu3v3KGE8AHz4YeFfX6HITEX40UfSndfIiBYByEtyMjBhAvDsGa0N26uXdNdnTAPc/MtYcaZQAD/9RM2uLVsWbsJ8pRMngAcPqC/3k08Kfr60tPylVMzIAMaNoylEJiZUQ5fLC359xgqAgypjxdm2bbS0mYkJMGmSblZiUaZC7N2bAmtB/fkn1VD//Tfv/fT1gfbtgXLlKC1hw4YFvzZjBcTNv4wVVxERwJIl9HzcOJobWtguXaKHoSHQr1/Bz5eSQhmZYmOBxMT379+nDwXW8uULfm3GJMA1VcaKqzlzKNlB48ZAz566KYOyL7VzZ2mm0ezZQwHVzg7o2PHd9+PjKQ9w1oDLAZUVIVxTZay4GjaMAtCUKYW7Ao1SWhqNvJXJpElJmJaW2ZTs7Q0YvPXnKTaWEuTfvUtBdeHCgl+TMYkViZrq0qVL4eTkBGNjY7i7uyMkJCTXfXfu3IkmTZrAwsICpqamcHFxwcaNGwuxtIwVEQ0bUsYhR0fdXN/QkPoyd+2SJnF9QAAQFQVYWQHdumV/LyaG1oS9e5dqxBMmFPx6jGmBzoPq1q1b4evri+nTp+P8+fNwdnaGl5cXoqOjc9zf0tISkydPRnBwMC5fvozBgwdj8ODBOHToUCGXnDEdyfp/QxcDk95WuXLBz5GaCqxdS88HDMg+ijc6Ghgxgladsbam3Ma8+gwronQeVOfPn4/hw4dj8ODBqFevHvz8/GBiYoI1a9bkuH+bNm3Qs2dP1K1bF9WrV8e4cePQsGFDnDhxopBLzpgO/PMPrY+q69aZ4GBqjpXKlSvAkyeAuXn2aTlPnwLDh9Pyb7a2lORBikXPGdMSnQbV1NRUhIaGwtPTU7VNT08Pnp6eCA4Ofu/xQggEBgYiLCwMH+Yy6T0lJQWJiYnZHowVS4mJwNy5VKt78UJ35UhKAiZOBLp2BW7fluacrq7A5MnA7NmZGZGEoEFJT54A9vYUUO3spLkeY1qi06AaExODjIwMWL81FcDa2hqRkZG5HpeQkICyZctCLpejS5cuWLx4Mdq3b5/jvrNnz4a5ubnq4cDfcllxtXAhJYuvUoUGKenKzp0UWO3sgOrVNT9PRASQ9f95jx6Am1vma5mM1oN1daWAamOj+bUYKyQ6b/7VRLly5XDx4kWcPXsWP//8M3x9fREUFJTjvpMmTUJCQoLq8ejRo8ItLGNSCAmhpPEyGdXedJU5KC2NkjMANEJX01HHt24BgwcDo0fTNJmsUlMznzs6AitW0BqtjBUDOp1SY2VlBX19fURFRWXbHhUVBZs8vpXq6emhRo0aAAAXFxfcuHEDs2fPRps2bd7Z18jICEZGRpKWm7FC9eoVpSIEKNOQs7PuynLoEA0csrLKeR5pfpw/T6N3k5Jojml6euZ7d+/SOrCTJwPNm0tTZsYKkU5rqnK5HK6urggMDFRtUygUCAwMhIeHR77Po1AokJKSoo0iMqZ7y5dTU6m1NTBmjO7KkZSUOUL38881qy3/8w/dQ1IS0KgRNetaWdF7t27RKN+oKFogQFfL2DFWADpP/uDr6wsfHx80adIEbm5uWLhwIZKSkjB48GAAgLe3N+zt7TF79mwA1EfapEkTVK9eHSkpKQgICMDGjRuxfPlyXd4GY9pjaUkBbPJk3S1rplBQU+3Dh++O0M2vnTspC5RCAbRpA/z8M61EAwA3btD5ExOBevWo/7goTBdiTE06D6p9+/bFs2fPMG3aNERGRsLFxQUHDx5UDV4KDw+HXpZ+m6SkJIwaNQqPHz9GmTJlUKdOHWzatAl9+/bV1S0wpl2DBtFIW2WNThf09CiQPnlC+YbLllXv+F27Mtd57dmTRg/r69PrGzcoU9LLl7Qg+eLF6p+fsSJCJkTpamNJTEyEubk5EhISYGZmpuviMJa75OSit+D2ixe0Koy6nj+nBcQ7daLMSMpa6K1bwJdfUg3V2RlYtEialW4YywdtxINiOfqXsRJvxw4alHT/vu7K8OgRMHZs9iQP6gTUrGuiVqgAbNlCATRrs+7u3RRQlTVUDqismOOgylhRc/QoJXmIigKOH9dNGe7do7mwwcHAvHnqH5+URAOSAgIyt+UUML/5hpp+Fy0qerVyxjSg8z5VxlgWZ89SwgMhgF69AB+fwi/DzZs0aCghAahZE/juO/WOf/6cpsWEhdG5Pvwwex9pbCxgYUH9tHp6wNChkhafMV3imipjRcXNm8DXX1OChY8+Ar7/vvBHwF6+TH2eCQlA/fqUeMHSMv/HP35MfadhYXTcsmXZA2pUFA28mjEDyMiQuvSM6RzXVBkrCh49otpdcjLQpAnw44+Fv0ZqSAjg65u58PnCheo1yYaFZfbB2tvTKOGsaUFjYqipNyKCRv4mJvIC46zE4ZoqY0XBggUUjGrXBv73v8JPQ6hQAL/9RgG1eXP1+zjPn6fVZGJjgVq1gDVrsgdU5QLj4eGUM9jPjwMqK5E4qDJWFMycCXTurLsRsHp6VDPt3ZuCq7GxeseHhFAtu3FjWu+0QoXM9xITqY/2/n3K4evnR9mhGCuBeJ4qY7oihO6zBkVESLOcmhCU4KFLl8wsSQAldBg5khI8VKhAaQkdHQt+PcYkwPNUGSspFAoaiKRc8UUXtm2jLEm5rPD0Xv/8AyhzbstkdK63F68ICwPu3KHRvsuXc0BlJR4HVcYKmxC0GPc//1Bzb0RE4Zdh3Tqaf5qeTiN+1SEE9Zl+9x2lG8xrFK+rKzB/Po0CrlatQEVmrDjg0b+MFbbly6mpVE+PkspL0fyaX0LQ9desodfDh9PKMOocv2gRsHEjva5d+91RyqmpNDBJuXyjGitOMVbccVBlrDBt3ZoZ0CZNAtq2LbxrC0G1RmWT81df0ULj+aVQ0JeAPXvota8vLQGXVVoa8O23wO3bNCCJm3tZKcNBlbHCcvgwjawFaPBOz56Fd22FglaJ2b2bXn//PeUWzq/UVGDKFGqy1tOj5926Zd8nPR344Qfg5EnqW42J4aDKSh0OqowVhvBwYNo0qi326UNZhwqTTAYYGFBAnDaNlpJTx4wZFFANDam22q5d9vevXaP5tZcv0xzb+fNpeg1jpQwHVcYKg6MjZRu6fp2SyBf2VBqZjAYWdelCK8Ko6/PPgdBQyvTk5pa5PSqKMicdOECvjY1pIXJ3d2nKzVgxw/NUGStMhTk3NSMD2L6dEjoYaPD9+e2ypqS8O2VmwwYauCSTUe135EhK8MBYMcDzVBkrTqKjqan15cvMbYUZUKdOpT7c6dPVPz4iAhgwgGrWSkZG1DcbHZ25rV8/oGNHGg08fToHVFbqcVBlTBsSEzPXE/3xx8K9dkYGDSQ6fJhqqF5e6h1/7x4txxYWBsydC6FQQKFQUH5fb2+6L+XcVLkc+OknoE6dfJ9+586d6NChAypUqACZTIaLFy/m67jt27ejTp06MDY2RoMGDRCQda1WAEIITJs2Dba2tihTpgw8PT1x+/btfJeLMSlwUGVMaqmpwIQJFJwqVgTGjSu8a6enA5MnA0eOUECdN4/WM82PZ8+AX38FBgyAePYMCRUr4o9atdDbwwN/OjggxceHlqeLigLu3tW4iElJSWjZsiXmzp2b72NOnTqFzz77DEOHDsWFCxfQo0cP9OjRA1evXlXtM2/ePCxatAh+fn44c+YMTE1N4eXlhdevX2tcVsbUxX2qjElJocisJZYtC6xaBdSoUTjXVk5pUY7SnTcPaNXq/cc9fw6sXQvs3AmRmooXiYk4K5PhVyMjtI+LQ4e4OOgLAaeqVWEyYACttyrBCjMPHjxA1apVceHCBbi4uOS5b9++fZGUlIR9+/aptjVr1gwuLi7w8/ODEAJ2dnb4+uuv8c033wAAEhISYG1tjXXr1qFfv34FLi8rebhPlbGizs+PAqq+PvVnFlZABYBZszID6q+/5i+gAsCDB0hZvx5Rjx/jcFQUxurr41e5HD+Gh6NTbCz0hcAje3sY795NaQl1sGRbcHAwPD09s23z8vJCcHAwAOD+/fuIjIzMto+5uTnc3d1V+zBWGDioMiaVffsysyVNmUKLjRembt0AMzMK5i1b5r7f8+fAyZMQQiAkJATDli/Hsvh4fGdqismVKuGJvT16jh4Nm2bNECGX43+Ojqi6bx/0CvMLwlsiIyNh/dZycdbW1oiMjFS9r9yW2z6MFQaep8qYVOrUoXVCu3YFPv648K/fpAmwdy81O+ckNhZYvx5ixw68SE7G1IYNcfLaNXqrQgWMMjKC4dSp8OjQAXK5HOerV8eSRYvQsnVr1KpVS6Mibd68GV988YXq9YEDB9AqvzVoxoohDqqMSaVGDWDLFqotFoa0NFrtZsCAzBVgcgqosbHAxo3I8PdHQnQ04uLicE1PD49SU9FMCAyysoLzy5cwzMigZdreZFtq3L49/Fu1opG/GurWrRvcsySCsLe31+g8NjY2iIqKyrYtKioKNm+S9it/RkVFwdbWNts+7+uvZUxKHFQZK4i4OODRI6BhQ3ptbl44101Npf7Nf/8Fzp0D/vqL+lKzev0arxctQvL69Uh+/hwvk5Jwx9AQp83NURnAgpQU2JUtC8PkZEpf2KYN0KtXtlMYGxsXqJjlypVDuXLlCnQOAPDw8EBgYCDGjx+v2nbkyBF4vFkBp2rVqrCxsUFgYKAqiCYmJuLMmTMYOXJkga/PWH5xUGVMUykpwNdfAzduULL6wlpxJjWVEuL/9x/NE508mYLizZtAcjIi7exw/PhxnAgMxIgtW6AvBO4bG+Mve3sk16qFxbduwdLEBPp6ejTlp3Nnqp1WrVooxY+NjUV4eDgi3qwjGxYWBoBqm8oap7e3N+zt7TF79mwAwLhx49C6dWv873//Q5cuXeDv749z587hjz/+AADIZDKMHz8eP/30E2rWrImqVati6tSpsLOzQ48ePQrlvhgDOKgyphmFgpLMX75Mzb2FtQB3airl8P33X5pC4+VFqQK//RavYmNxJSUFo97UluUKBe4YG6OcmRke+vrim3btULduXcjmzAGSkiiQurm9ux6qlu3duxeDBw9WvVZOd5k+fTpmzJgBAAgPD4delnI1b94cW7ZswZQpU/DDDz+gZs2a2L17Nz744APVPt999x2SkpIwYsQIxMfHo2XLljh48GCBa9uMqYPnqTKmiaVLaW6ngQE9d3XV/jVTU2mt0q1bKShWrgyYmuJ1SgpiYmIQ9fIlwsqUQYCVFXqbmMDj5UuUl8shl8uBzZtpQXHGmIo24gHXVBlT1969FFAByq+rjYAaFwdcuED9pbdvAytW0OPkScDQEKJyZcSamyMkJQXHk5IQZW6OmnI5PilTBp8aGsIQoEFLdna0Mo2lpfRlZIy9g4MqY+oICaH1RAFg2DAKWFKIj6fcuufO0RJrb6cBvH+f1mC9cQPhDRpg+u7duBITA+jrQ8/KCj41amDo5cvU1GliAnh6UvOui0uhN+8yVpoVif9tS5cuhZOTE4yNjeHu7o6QkJBc9125ciVatWqF8uXLo3z58vD09Mxzf8YkdeQIJZP38qJ0fZqKj6fmXKXNm6mvdNu2zIBqbg6YmlIQt7UFTE1xuXt3rFi8GG0vXcJnyckYNGgQ9u7di9EbN8K4a1fKqnToEK2O07gxB1TGCpnO+1S3bt0Kb29v+Pn5wd3dHQsXLsT27dsRFhaGSjksI9W/f3+0aNECzZs3h7GxMebOnYtdu3bh2rVr+ZoDx32qrEAUCmD3bqoFyuX5Py45mWqiISH0uHMHWLgwM/PRmTPA/PlAo0YUCENCgAcP6Hp9+gBGRnj299+ICQmBEAImJiao3LgxDA4c4MDJmIa0EQ90HlTd3d3RtGlTLFmyBACgUCjg4OCAsWPHYuLEie89PiMjA+XLl8eSJUvg7e393v05qDK1pabSgCR1g1d0NAXgkBDgypXM5dKUvvqKllJTXmPfPmD9euDJE9pWpgzEixdITkpC/MuXSExMhALAy6pV0Xj0aBi2bg3UrVt4a7QyVsKUuIFKqampCA0NxaRJk1Tb9PT04Onpme8k2MnJyUhLS4NlLgMxUlJSkJKSonqdmJhYsEKz0kWhoKZUAJg5kxbqzokQ1O8pBFC9Om1LTgbezKMEANjbA+7uQNOmNLhJ+TsbGUl5eyMigFevIJyd8bRNG+zQ04PpunWo8+wZrpia4rK9Pex79sT3P/8MAwMeDsFYUaTT/5kxMTHIyMjIMQn2zZs383WO77//HnZ2du+sYKE0e/ZszJw5s8BlZaXUsmXA0aNUU71zB6hVi0bm6usDr14BFy9STfT0aUpU3749MGcOHVulCtCzJ1CvHs0HVXZPCAFcu0Y101OngIsXIR48gOLVKyQZG+MnhQL/7N0LADAyM4OJkxO8OnbEmM6daZ4p10wZK7KK9dfdOXPmwN/fH0FBQblO8J40aRJ8fX1VrxMTE+Hg4FBYRWTF2e7dNHXm9WugY0dg+XKa5vLkCZCQQNmIlE1GCQnA06dU2/znHwq6ykdgIDBpEgXViAhg/HiIAweQ5uCAlykpSEpKwpP0dJw1M8OlsmVxIzERRmXKoG3btujcuTPc3Ny4ZspYMaHT/6lWVlbQ19fPM1F2bn777TfMmTMHR48eRUNl3tUcGBkZwSi3JjvGchMSQoHw8WNqpj1+PPO9Fy+oD1RPjxIq1K9P23bupOZhhYIeL18Cz54BGRlInTYNyZMnIz0mBhmJiTB79QrnnzzB3xUq4EqlSoiSy2FmZgY3Nzf80KoV2rZtCxMTE93dP2NMIzoNqnK5HK6urggMDFTl51QoFAgMDMSYMWNyPW7evHn4+eefcejQITQp7DUrWckTEQGcPUuBtHFjmid69CgNAFI283p4AC1aAFZWwOLF1A+ang6EhdFDCJofOmIE8OmnNCjp5k0kDxuG5zExeHnpEsSbZturJiYIqFEDYRYWcGnUCJ+6u8PNzQ116tTJlpqPMVb86LxNydfXFz4+PmjSpAnc3NywcOFCJCUlqXKDvp1Ye+7cuZg2bRq2bNkCJycn1QLEZcuWRdnc1pFkLCfnz1Mi/Hv3qIk3NZWC6/XrtFxaejoFVQsLoHVroHdv4NatzNG5yr5NY2Pax8KC5pNaWeH27dtY+eefkCkUeFGxIl4aGKCcgwOs69aFg7MzvqxbFy4uLpyXlrESRudBtW/fvnj27BmmTZuGyMhIuLi44ODBg6rBS28n1l6+fDlSU1PRu3fvbOfJmoybsTzFxwNr1gD+/tQXGhtLzbV6ejRfNCWFAqahITXntm0LdOpExzo6AtOnU95dW1ugfPlsI4KfPn0Kv+nTERAQACEE9K2s8Mknn2DYsGGoUKGCbu6XMVZodD5PtbDxPNVSKDGRaqWhofQICqJaqUJBtcyKFanp9t49CqRlygDNmlEz7kcfUVaj9wgPD4e/vz927dqFtLQ0AECHDh0wcuRIHhjHWBFV4uapMqY1aWnAokUURG/fpj5PhYJqqYmJFFTt7anm2acP8NlnwKpVgLU1zRktX/69l1AoFDh9+jT8/f1x6tQp1famTZti7NixqFevnhZvkDFWFHFQZcVfWhpNdYmJoQW3AapxHj9Og5AUCpr68vgxzTetWpUGH8lkwJIlQIMGdMx33+XrcsnJydi3bx/8/f0RHh4OgBbJbtmyJT7//HM0adKE55IyVkpxUGXFU3Q0JU44eZL6QZOTgXLlKNG9vj7tM3gwbd+zB3j8GBkffADx9CmQnAzxpkn3RWAgXpiZIT09PdsjLS1N9cj6OiwsDHv37kVSUhIAwNTUFN27d8enn37KzbyMMe5TZUVQbCwQHg5ERWU21aak0OPsWdr24AHtm5hIg43kcpruUqMGNfWmpAAPH1KgTUkBjIxw7sEDmMTHAwAi5XKstbHBjXz0l+bE0dER/fr1Q9euXXk+KWPFFPepsuJNoaBUflFRmY/ISPo5aRJNSQGAdeuALVto/xcvaLFtZe3z2TMKlGXKAB98QPucO0cDjmQyyr+rUNA54+Npke7KlYGXL1Hh9Wu8kMmwt0IFBFSsCMjlKKOvDwMDA+hn+SmXy2FoaAgDAwMYGhpme5iZmaFz585o1qwZzylljL2DgyorHCtX0kCgt1dqUfLxoaCamkrBMCGBaqEyGSWhr12bpq4kJ1P+3c6daf9bt4CbNymoyuWUxcjPj2qnFSsCX35JAXjxYjj26gXF99/jg6pVMYUDImNMCzioMukIQQtsHztGjzlzaHQtQFNWMjJoLqiVFWBjQyNtra0p+D16BOzYQXlzX76kBbrNzSkp/dChNFc0J7Vq0UNp9WoanGRuDvz2G9C8OSVxcHCAftu20OcBRIwxLeKgygpGoaAVV5SB9NGjzPeCgjLXC+3aFfD0pICqbMpVCg8HPvkk83WlSjTgyMuLaqjqBMI6daiWamsLKFNYGhgA7dppdHuMMaYODqpMc3fuAGPG0FQWJbmcEie0aQN8+GHmdmXNMyUFCAigvtEhQ+g9R0eqUdraUiB1ccn/guAvXtBKMp99Rjl5AwKouVdPj1aNqVJFqrtljLH34tG/LH+io4FLl6iWqaz1paRQxiE9PaBVK2qibd6cmnrf9ugR8NdfwN691FdqaAgcOJA5OEkTt24B334L3LhBTc/m5lSr7dcPGDky53IwxtgbPPqXFY7UVBr8c/kycOUKPaKj6b1q1TKDqpERDT6qVo1qqG/LyABOnAC2b6dFvJVsbYFevahZVlMBAcCsWTTaNyWFsiNVqwZMnZqZzIExxgoZB9XSTgggLo7WDFUaMIDy4GalpwfUrAm4utLAH2VArFMn93Nv3QrMn0/PZTKqxfbuTUuoaTr6VghgxQoK5gANdJLLgS++AAYNohowY4zpCAfVkkgISqCQdVWUPXuo+TYxkR4vXmQ+l8loUJEy0NWpQ9NaGjQAGjakn3XrUl9lfq6tHFjUsSOwaRP97NWLapMFkZZGzb3//ktlHTIE6N6daqrVqhXs3IwxJgEOqsWZQkHJE+7fp5ql8ue9e9SEe+JEZo3y7Fng4MGcz6OvT3lxldNffviBmnbVGXWbnk4JGy5fBn79lY61tAT27dO8VppVRgbl6V27lpI/LF4M9OxZ8PMyxpiEOKgWV0IAAwcCYWE5v6+vTwG3cmV67elJtTlzcwpKZmb0KFeOprBkWRMU6i6cfe0a8PPPNHAIAIKDqakXkCag3rpF/ac3b1KGpPr1gY8/Lvh5GWNMYhxUi5O0NApS+vpUE+zfH/jxR5o2Uq0arb6i/OngkL1/sU0bekgpKQlYtgzYto2CvJkZMGEC4OEhzflTU4HZs2mgk7ExnX/GDKBLF/Vq0YwxVkg4qBYHCgVw9CgFMG/vzEQJHTsCHToUbBStpoKCgHnzMkcFd+5MATUf65Dmy717wPDhQEgIvf7sMwqwWfuJGWOsiOGgWtSFhNBi2zdv0uudO6kvUSajWqsuctimp1P/ZnQ0NS//8APg5ibtNc6do4dMRkkkfvuNaqqMMVaEcVAtqm7coME4ypqaiQklnf/sM900fQpBDz09qhn/8APNPR06NHt/bEGEhdG0nXXrqFZeuTJlWJozJ+d5sIwxVsRwUC2K1qyhoAJQAOvThxbclqppVV1PntBApObNaQ4rADRuTA8pvHwJLFgA7N5N57xwgbaPGAGMHaub2jhjjGmAg2pR5O5Oy5d17EhLl9nZ6aYcCgXg708B/vVrqkn26pW/+ar5FRICzJyZuf7p4cM0Gvmbb4C+faW7DmOMFQIOqrqWmkqZh1JSgGHDaFv9+pSswdZWd+W6e5dGFl+9Sq9dXYEpU6QLqMnJ1Fe8Ywe9rlyZgvemTTRdpn17aa7DGGOFiIOqrigUwKFDFEiePqXpL1270jqjgO4CaloaJVhYs4YGJJmaAuPHU+YiqZphL10Cpk2jZuWMDKqRjhtHAbtpU54uwxgrtjio6sK5c8DChZkjeitVolVVKlXSabEAUGYlZUD98ENg4kTpy/XqFQVUc3O6jlyemXCCAypjrBjjoFqYIiJobueJE/TaxISSwH/+ufpZjKSUNV9v1arAV1/RYuLt20sX5BITM6fENGtGg5C2bqUEEkFB1PTNU2YYY8UcD6ssTIaGlINXX59G9O7eTUnhdRlQb9ygEb3KWjNAQb5DB2kCamoqTQ3q0YOauQGqqW/aBCQkALVqUc2YAypjrATgmqo2KZPaK9cfrVgRmD6dVoFRJq/XZdlWraI5oQoFDRpSTuORyo0bdL/KZeSOHqWRzFOmUN9t48a0NFzZstJelzHGdISDqjYIAQQGUqCKiAD++CNzTmeHDrotG0DBbsYMGuELUDPvd99Jd/6MDKp9rlpFzy0tKVlEQgL10QpBXzR++omTOjDGShQOqlK7dg343/9oCTSAaqfJyQU+bXp6OiIjIxEREYHHjx8jIiICERERiIyMhFwuh6WlJSwsLFC+fPlsj7Jly8LAwAAGBgYwFAJl/f1RZts2yISAzNISsokTIfP0LHD5VB4/BqZOBa5codeensD331PiiiNHaNsnn1Bw5aQOjLESRiaEELouRGFKTEyEubk5EhISYCZlP15kJLB0KXDgAL02Nqbk9wMH5ntup0KhQEREBO7du4e7d+/i8ePHePLkCZ48eYKoqCgoFIoCFbFlfDxGvOnXPGNmhg3W1nhpaAi5XA4jIyPY2Nhg4cKFqFSQ0b6LFgEbNtBUnIkTgU6dsr9/7RpQrx6P8mWM6Zw24oHOa6pLly7Fr7/+isjISDg7O2Px4sVwyyU5+7Vr1zBt2jSEhobi4cOHWLBgAcaPH1+4Bc7B0sWL4fLzz7BNS4O+gQHu1qmDsHbtUEYuh+WRI7CwsIClpSUsLS1Rvnx5GBsbIyoqCnfv3lU97t27h3v37iElJSXX68jlctjZ2cHe3l71sLGxQWpqKuLi4hAfH4+4uLhsj+TkZKSnpyMtLQ1nDQ3ROCkJweXK4azyF0gIpKSkICUlBYmJiVi+fDmmT5+u+Yfx5ZfAixc0AMvampq+e/TInJZTv77m52aMsSJOp0F169at8PX1hZ+fH9zd3bFw4UJ4eXkhLCwsx9pScnIyqlWrhk8//RQTJkzQQYlzFh0Tg63lyqFNfDw2V6yIh0lJwN9/57q/np5errVOuVwOJycnVK9eHY6OjtkCqKWlJfQkaDIdoFAgPT0dKSkpSE1NRUpKCu7evYsJEyZg37596N+/P2rUqJG/k50+DezaBfzyC41qlsuByZOpL3XmTGD/fhqgtHlz9vVd8yEtLQ1TpkxBQEAA7t27B3Nzc3h6emLOnDmwyyN14+zZs7Fz507cvHkTZcqUQfPmzTF37lzUrl1btc/r16/x9ddfw9/fHykpKfDy8sKyZctgbW2tVhkZYywrnTb/uru7o2nTpliyZAkAav50cHDA2LFjMXHixDyPdXJywvjx49WuqWqjuh8bG4voqCjExsYi7k1tMTY2NtvPuLg4PH/+HKmpqQAAfX19VKlSBTVq1EC1atVQvXp1VK9eHfb29tDX15ekXOr6/vvvERgYiNq1a2PBggV5NwOnpNBUGX9/ev3ddzRNCKCRxZMnA8eOUb/pjBm03qqaEhIS0Lt3bwwfPhzOzs6Ii4vDuHHjkJGRgXPnzuV6XMeOHdGvXz80bdoU6enp+OGHH3D16lVcv34dpqamAICRI0di//79WLduHczNzTFmzBjo6enh5MmTapeTMVY8aaU7UOhISkqK0NfXF7t27cq23dvbW3Tr1u29x1epUkUsWLDgvfu9fv1aJCQkqB6PHj0SAERCQoKGJdecQqEQSUlJIjIyUqSlpRX69d8nPDxctG3bVri6ugpPT09x/PjxnHcMCxPi00+FcHWlx9y5Qrx6Re8lJwsxahRtb9ZMiKAgScsYEhIiAIiHDx/m+5jo6GgBQHU/8fHxwtDQUGzfvl21z40bNwQAERwcLGl5GWNFV0JCguTxQGfDL2NiYpCRkfFOc5u1tTUiIyMlu87s2bNhbm6uejg4OEh2bnXJZDKYmJjA2toaBgY6785+h4ODAzZu3IhatWohLi4Ovr6+mDZtGmJiYmgHhQLYuJEGYN27R1NlFi1C7LBhWOfvj4dXrwKjRwNnztDgrN9/B1q3lrSMCQkJkMlksLCwUOsYALC0tAQAhIaGIi0tDZ5ZRj3XqVMHjo6OCA4OlrS8jLHSpej9ZZfYpEmT4Ovrq3qdmJio08Ba1Nnb22PdunXw8/PDxo0bERAQgH/++Qf169dHm5AQtHr6FIZyOV40aoTEr75CJUdH7Ny0CRs2bEDGkyfoamAAq2rVoL9kCdCggaRle/36Nb7//nt89tln+W6qUSgUGD9+PFq0aIEPPvgAAFTTkN4OzFJ/oWOMlT46C6pWVlbQ19dHVFRUtu1RUVGwUa7UIgEjIyMYGRlJdr7SQC6X46uvvkK7du0wf/58XL58GaGhoYhMT0f15GRsLVsWxx8/pvmnWWyxtkaVuDh8uGwZ9DUY5bt582Z88cUXqtcHDhxAq1atANCgpT59+kAIgeXLl+f7nKNHj8bVq1dxQplvmTHGtEhnQVUul8PV1RWBgYHo0aMHAKpVBAYGYsyYMboqFsvigw8+wOrVqxEcHIyYmBhYWFjgwf37sI6KgsejR4iIiMDTp09Vg68SDAxgvn075BpOm+nWrRvc3d1Vr+3t7QFkBtSHDx/in3/+yXctdcyYMdi3bx/+/fdfVK5cWbVdOQ0pPj4+W21V6i90jLHSR6fNv76+vvDx8UGTJk3g5uaGhQsXIikpCYMHDwYAeHt7w97eHrNnzwYApKam4vr166rnT548wcWLF1G2bNn8TwFhapHJZGjevHnmhg8/zPa+EAJxcXF48OABKleuXKDEEeXKlUO5cuWybVMG1Nu3b+PYsWOoUKHCe88jhMDYsWOxa9cuBAUFoWrVqtned3V1haGhIQIDA9GrVy8AQFhYGMLDw+Hh4aFx+RljTGejf5UWL14sHB0dhVwuF25ubuL06dOq91q3bi18fHxUr+/fvy8AvPNo3bp1vq+njdFeTDtSU1NFt27dROXKlcXFixfF06dPVY+UlBTVfu3atROLFy9WvR45cqQwNzcXQUFB2Y5JTk5W7fPll18KR0dH8c8//4hz584JDw8P4eHhUaj3xxjTLW3EA05TyIqsBw8evFPLVDp27BjatGkDgOYsDxo0CDNmzABAteucrF27FoMGDQKQmfzhzz//zJb8gZt/GSs9tBEPOKgyxhgrlbQRD3iZEMYYY0wiHFQZY4wxiXBQZYwxxiTCQZUxxhiTCAdVxhhjTCIcVBljjDGJcFBljDHGJMJBlTHGGJMIB1XGGGNMIhxUGWOMMYlwUGWMMcYkwkGVMcYYk4hO11PVBeX6AYmJiTouCWOMMV1SxgEp15UpdUH1+fPnAAAHBwcdl4QxxlhR8Pz5c5ibm0tyrlIXVC0tLQEA4eHhkn2IxU1iYiIcHBzw6NGjUrn8XWm/f4A/A4A/g9J+/wCQkJAAR0dHVVyQQqkLqnp61I1sbm5ean+RlMzMzEr1Z1Da7x/gzwDgz6C03z+QGRckOZdkZ2KMMcZKOQ6qjDHGmERKXVA1MjLC9OnTYWRkpOui6Exp/wxK+/0D/BkA/BmU9vsHtPMZyISUY4kZY4yxUqzU1VQZY4wxbeGgyhhjjEmEgypjjDEmEQ6qjDHGmERKZFBdunQpnJycYGxsDHd3d4SEhOS6786dO9GkSRNYWFjA1NQULi4u2LhxYyGWVjvU+Qyy8vf3h0wmQ48ePbRbQC1T5/7XrVsHmUyW7WFsbFyIpdUOdX8H4uPjMXr0aNja2sLIyAi1atVCQEBAIZVWO9T5DNq0afPO74FMJkOXLl0KscTSUvd3YOHChahduzbKlCkDBwcHTJgwAa9fvy6k0mqHOp9BWloaZs2aherVq8PY2BjOzs44ePCgehcUJYy/v7+Qy+VizZo14tq1a2L48OHCwsJCREVF5bj/sWPHxM6dO8X169fFnTt3xMKFC4W+vr44ePBgIZdcOup+Bkr3798X9vb2olWrVqJ79+6FU1gtUPf+165dK8zMzMTTp09Vj8jIyEIutbTU/QxSUlJEkyZNROfOncWJEyfE/fv3RVBQkLh48WIhl1w66n4Gz58/z/Y7cPXqVaGvry/Wrl1buAWXiLr3v3nzZmFkZCQ2b94s7t+/Lw4dOiRsbW3FhAkTCrnk0lH3M/juu++EnZ2d2L9/v7h7965YtmyZMDY2FufPn8/3NUtcUHVzcxOjR49Wvc7IyBB2dnZi9uzZ+T5Ho0aNxJQpU7RRvEKhyWeQnp4umjdvLlatWiV8fHyKdVBV9/7Xrl0rzM3NC6l0hUPdz2D58uWiWrVqIjU1tbCKqHUF/VuwYMECUa5cOfHy5UttFVGr1L3/0aNHi3bt2mXb5uvrK1q0aKHVcmqTup+Bra2tWLJkSbZtn3zyiejfv3++r1mimn9TU1MRGhoKT09P1TY9PT14enoiODj4vccLIRAYGIiwsDB8+OGH2iyq1mj6GcyaNQuVKlXC0KFDC6OYWqPp/b98+RJVqlSBg4MDunfvjmvXrhVGcbVCk89g79698PDwwOjRo2FtbY0PPvgAv/zyCzIyMgqr2JIq6N8CAFi9ejX69esHU1NTbRVTazS5/+bNmyM0NFTVPHrv3j0EBASgc+fOhVJmqWnyGaSkpLzT9VOmTBmcOHEi39ctUQn1Y2JikJGRAWtr62zbra2tcfPmzVyPS0hIgL29PVJSUqCvr49ly5ahffv22i6uVmjyGZw4cQKrV6/GxYsXC6GE2qXJ/deuXRtr1qxBw4YNkZCQgN9++w3NmzfHtWvXULly5cIotqQ0+Qzu3buHf/75B/3790dAQADu3LmDUaNGIS0tDdOnTy+MYktK078FSiEhIbh69SpWr16trSJqlSb3//nnnyMmJgYtW7aEEALp6en48ssv8cMPPxRGkSWnyWfg5eWF+fPn48MPP0T16tURGBiInTt3qvXlskTVVDVVrlw5XLx4EWfPnsXPP/8MX19fBAUF6bpYheLFixcYOHAgVq5cCSsrK10XRyc8PDzg7e0NFxcXtG7dGjt37kTFihWxYsUKXRet0CgUClSqVAl//PEHXF1d0bdvX0yePBl+fn66LppOrF69Gg0aNICbm5uui1JogoKC8Msvv2DZsmU4f/48du7cif379+PHH3/UddEKze+//46aNWuiTp06kMvlGDNmDAYPHqzWKjYlqqZqZWUFfX19REVFZdseFRUFGxubXI/T09NDjRo1AAAuLi64ceMGZs+ejTZt2mizuFqh7mdw9+5dPHjwAB9//LFqm0KhAAAYGBggLCwM1atX126hJaTp70BWhoaGaNSoEe7cuaONImqdJp+Bra0tDA0Noa+vr9pWt25dREZGIjU1FXK5XKtlllpBfg+SkpLg7++PWbNmabOIWqXJ/U+dOhUDBw7EsGHDAAANGjRAUlISRowYgcmTJ0u6PFph0OQzqFixInbv3o3Xr1/j+fPnsLOzw8SJE1GtWrV8X7d4fUrvIZfL4erqisDAQNU2hUKBwMBAeHh45Ps8CoUCKSkp2iii1qn7GdSpUwdXrlzBxYsXVY9u3bqhbdu2uHjxIhwcHAqz+AUmxe9ARkYGrly5AltbW20VU6s0+QxatGiBO3fuqL5QAcCtW7dga2tb7AIqULDfg+3btyMlJQUDBgzQdjG1RpP7T05OfidwKr9kiWKYIr4gvwPGxsawt7dHeno6/vrrL3Tv3j3/F9ZgQFWR5u/vL4yMjMS6devE9evXxYgRI4SFhYVqisTAgQPFxIkTVfv/8ssv4vDhw+Lu3bvi+vXr4rfffhMGBgZi5cqVurqFAlP3M3hbcR/9q+79z5w5Uxw6dEjcvXtXhIaGin79+gljY2Nx7do1Xd1Cgan7GYSHh4ty5cqJMWPGiLCwMLFv3z5RqVIl8dNPP+nqFgpM0/8HLVu2FH379i3s4kpO3fufPn26KFeunPjzzz/FvXv3xOHDh0X16tVFnz59dHULBabuZ3D69Gnx119/ibt374p///1XtGvXTlStWlXExcXl+5olLqgKIcTixYuFo6OjkMvlws3NTZw+fVr1XuvWrYWPj4/q9eTJk0WNGjWEsbGxKF++vPDw8BD+/v46KLW01PkM3lbcg6oQ6t3/+PHjVftaW1uLzp07qzUvrahS93fg1KlTwt3dXRgZGYlq1aqJn3/+WaSnpxdyqaWl7mdw8+ZNAUAcPny4kEuqHercf1pampgxY4aoXr26MDY2Fg4ODmLUqFFqBZSiSJ3PICgoSNStW1cYGRmJChUqiIEDB4onT56odT1e+o0xxhiTSInqU2WMMcZ0iYMqY4wxJhEOqowxxphEOKgyxhhjEuGgyhhjjEmEgypjjDEmEQ6qjDHGmEQ4qDLGGGMS4aDKGGOMSYSDKmOMMSYRDqqMsXwTbxavZozljIMqYyXAixcv0L9/f5iamsLW1hYLFixAmzZtMH78+AKdNygoCDKZDAcOHICrqyuMjIxw4sQJaQrNWAnEQZWxEsDX1xcnT57E3r17ceTIEfz33384f/68ZOefOHEi5syZgxs3bqBhw4aSnZexksZA1wVgjBXMixcvsH79emzZsgUfffQRAGDt2rWws7OT7BqzZs1C+/btJTsfYyUV11QZK+bu3buHtLQ0uLm5qbaZm5ujdu3auR4THh6OsmXLqh6//PJLntdo0qSJZOVlrCTjmipjpZCdnR0uXryoem1paZnn/qamplouEWMlA9dUGSvmqlWrBkNDQ5w9e1a1LSEhAbdu3cr1GAMDA9SoUUP1eF9QZYzlD9dUGSvmypUrBx8fH3z77bewtLREpUqVMH36dOjp6UEmk+m6eIyVKlxTZawEmD9/Pjw8PNC1a1d4enqiRYsWqFu3LoyNjXVdNMZKFZkQQui6EIwxaSUlJcHe3h7/+9//MHToUF0Xh7FSg5t/GSsBLly4gJs3b8LNzQ0JCQmYNWsWAKB79+46LhljpQsHVcZKiN9++w1hYWGQy+VwdXXFf//9BysrK10Xi7FShZt/GWOMMYnwQCXGGGNMIhxUGWOMMYlwUGWMMcYkwkGVMcYYkwgHVcYYY0wiHFQZY4wxiXBQZYwxxiTCQZUxxhiTyP8BmfsxYN0SiPkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Z = np.linspace(ctZs[0], ctZs[-1], 20)\n", "for t in ctTs:\n", " mags = emiles.interpolate(age=np.ones(Z.shape)* t, met=Z, imf_slope=imf).magnitudes(filts)\n", " gr = mags['SLOAN_SDSS.g'] - mags['SLOAN_SDSS.r']\n", " iJ = mags['SLOAN_SDSS.i'] - mags['2MASS_2MASS.J']\n", " ax.plot(gr, iJ, 'r--', alpha=0.8)\n", " ax.text(gr[-1], iJ[-1]+0.04, f\"{t.value:.1f}\", c='r', horizontalalignment='center', verticalalignment='center')\n", "\n", "ax.set_xlabel('g - r')\n", "ax.set_ylabel('i - J')\n", "ax.set_xlim(0.3, 0.9)\n", "ax.set_ylim(0.05, 0.8)\n", "\n", "ax.text(0.35, 0.7, 'Age, Gyr', c='r', size=16)\n", "ax.text(0.35, 0.62, 'Metallicity, [M/H]', c='k', size=16)\n", "\n", "plt.tight_layout()\n", "f" ] }, { "cell_type": "markdown", "id": "b52b3b77-eaf8-4387-8eea-1d726bef65dc", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "**Note**: we used `interpolate`, rather than `closest`, which is faster. But for this grid it could generate bad-looking lines if we select the grid lines outside of the exact ranges sampled in the library." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }